503,983 views
24 votes
24 votes
Place each function below in the appropriate cell to show the transformation from f to g.

User Piotr Wojsa
by
2.7k points

1 Answer

13 votes
13 votes

Answer:


\begin{array}{ccc}{} & {g(x) = f(x) - 2} & {g(x) = f(x) + 2} & {f(x) = 3x^2 + 3} & {g(x) =3x^2 + 1} & {g(x) =3x^2 + 5} & {f(x) = 3x^2 - 3} & {g(x) =3x^2 -5} & {g(x) =3x^2 - 1} \ \end{array}

Explanation:

Given

See attachment for complete question

Required

Complete the cells

For cell 1:


f(x) = 3x^2 + 3

Solve for
g(x) = f(x) - 2

Substitute
f(x) = 3x^2 + 3


g(x) = 3x^2 + 3 - 2


g(x) = 3x^2 + 1

For cell 2:


f(x) = 3x^2 + 3

Solve for
g(x) = f(x) + 2

Substitute
f(x) = 3x^2 + 3


g(x) = 3x^2 + 3 + 2


g(x) = 3x^2 + 5

For cell 3:


f(x) = 3x^2 - 3

Solve for
g(x) = f(x) - 2

Substitute
f(x) = 3x^2 - 3


g(x) = 3x^2 - 3 - 2


g(x) = 3x^2 - 5

For cell 4:


f(x) = 3x^2 - 3

Solve for
g(x) = f(x) + 2

Substitute
f(x) = 3x^2 - 3


g(x) = 3x^2 - 3 + 2


g(x) = 3x^2 - 1

So, the complete cell is:


\begin{array}{ccc}{} & {g(x) = f(x) - 2} & {g(x) = f(x) + 2} & {f(x) = 3x^2 + 3} & {g(x) =3x^2 + 1} & {g(x) =3x^2 + 5} & {f(x) = 3x^2 - 3} & {g(x) =3x^2 -5} & {g(x) =3x^2 - 1} \ \end{array}

Place each function below in the appropriate cell to show the transformation from-example-1
User Kbb
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.