126k views
9 votes
Differentiate x²(x + 1):​

User Japollock
by
4.4k points

2 Answers

5 votes

Answer:


{ tt{y = {x}^(2)(x + 1) }} \\ \\ { \tt{ (dy)/(dx) = (2x)(x + 1) + ( {x}^(2))(1) }} \\ \\ { tt{ (dy)/(dx) = 2 {x}^(2) + 2x + {x}^(2) }} \\ \\ { \tt{ \fac{dy}{dx} = 3 {x}^(2) + 2 }} \\ \\ { \boxed{ \tt{ \frc{dy}{dx} = x(3x + 2) }}}

User Michael Teper
by
4.5k points
12 votes

Answer:


{ \tt{y = {x}^(2)(x + 1) }} \\ \\ { \tt{ (dy)/(dx) = (2x)(x + 1) + ( {x}^(2))(1) }} \\ \\ { \tt{ (dy)/(dx) = 2 {x}^(2) + 2x + {x}^(2) }} \\ \\ { \tt{ (dy)/(dx) = 3 {x}^(2) + 2x }} \\ \\ { \boxed{ \tt{ (dy)/(dx) = x(3x + 2) }}}

User Khachatur
by
4.2k points