73.6k views
0 votes
Find f’ (x)
f(x)=7x^e - 5e^x

Find f’ (x) f(x)=7x^e - 5e^x-example-1

2 Answers

5 votes
Answer: I think f(x) Is 0
User Pahko
by
5.8k points
5 votes

Answer:


f'(x)=7ex^(e-1)-5e^x

Explanation:

Differentiation rules


\boxed{\begin{minipage}{4.8 cm}\underline{Differentiating $ax^n$}\\\\If $y=ax^n$, then $\frac{\text{d}y}{\text{d}x}=nax^(n-1)$\\\end{minipage}}


\boxed{\begin{minipage}{4.8 cm}\underline{Differentiating $e^(x)$}\\\\If $y=e^(x)$, then $\frac{\text{d}y}{\text{d}x}=e^x$\\\end{minipage}}

Given function:


f(x)=7x^e-5e^x

Differentiate with respect to x using the differentiation rules:


\implies f'(x)=e \cdot 7x^(e-1)-5e^x


\implies f'(x)=7ex^(e-1)-5e^x

User CalvinR
by
5.0k points