Answer:
6 seconds
Explanation:
Given function:
![h(t)=-16t^2+72t+144](https://img.qammunity.org/2023/formulas/mathematics/college/d95k88w2at4wm273o36dgnodpp960d2mif.png)
where:
- h is the height of the rocket.
- t is the time (in seconds) after launch.
To find how long the rocket is in the air, find the positive value of t when h(t)=0.
![\implies -16t^2+72t+144=0](https://img.qammunity.org/2023/formulas/mathematics/college/orjlxlouyo6jijb5pjmnos5z65dc1c3jpk.png)
![\implies -8(2t^2-9t-18)=0](https://img.qammunity.org/2023/formulas/mathematics/college/ipnm3c1hsc11df9bx33usgmj8ys6rwm0k7.png)
![\implies 2t^2-9t-18=0](https://img.qammunity.org/2023/formulas/mathematics/college/4o59tcl61pudqbelxagwmj8nj7ejlat4y8.png)
![\implies 2t^2+3t-12t-18=0](https://img.qammunity.org/2023/formulas/mathematics/college/2r8yuoz9p85bsdxr9dewzxi1nbq067cjhc.png)
![\implies t(2t+3)-6(2t+3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/en1mgmwv59l4atpajyda1l6uvx5l2zfrwd.png)
![\implies (t-6)(2t+3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/rrz00595ywuxx81rd8f0hhq5z1flgyjp1v.png)
Apply the zero-product property:
![t-6=0 \implies t=6](https://img.qammunity.org/2023/formulas/mathematics/college/bxmgu8qjycf12z080r9ctxqoffj7jxso7u.png)
![2t+3=0 \implies t=-(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/r46si7lc4v9xft29wbhg1aie41cwe1fjg5.png)
Therefore, as t > 0, the rocket is in the air for 6 seconds.