Answer:
Slope of the line,
![m_(1) = -(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/wex8cdm7dhkq10h6eagr00idxcox3uk1nh.png)
Slope of parallel line, same as the slope above
Slope of perpendicular line,
![m_(2) = 2](https://img.qammunity.org/2023/formulas/mathematics/college/zup9o2wnky5hwbcjn1kgrtpky7p4o12o5m.png)
Explanation:
Parallel line:
![m_(1) = m_(2)](https://img.qammunity.org/2023/formulas/mathematics/college/te054vb6y6e6c4ig9zanmk2qstpmaneoi3.png)
Perpendicular line:
![m_(1) * m_(2) = -1](https://img.qammunity.org/2023/formulas/mathematics/college/cou7jbrcs6b8b7ah9rjc3vjgy4k68o0xqy.png)
![y = mx +b](https://img.qammunity.org/2023/formulas/mathematics/high-school/jj7rfl9k07fjtzsiyj4po8mpswtp88lpec.png)
Where, m = slope
Thus, in the equation provided, the slope is
![-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/g3dzahzg2weqewvw38ee4amnmv0vijzmvk.png)
Finding the slope of perpendicular line:
![m_(1) * m_(2) = -1\\m_(2) = (-1)/(m_(1))\\m_(2) = -1 * -2\\m_(2) = 2](https://img.qammunity.org/2023/formulas/mathematics/college/tfpbcbli0weuk6d5kmfuu9b6dg31j5nvam.png)