13.9k views
4 votes
Use vectors to find the interior angles of the triangle with the given vertices. (Enter your answers as a comma-separated list. Enter your answers in terms of degrees. Round your answers to two decimal places.)

(−2, 4), (−3, 8), (6, 8)

Please Help ASAP

User VoiDnyx
by
3.1k points

1 Answer

4 votes

Answer:

77.47°

75.96°

26.57°

Explanation:

Given vertices of the triangle:

  • A = (−2, 4)
  • B = (−3, 8)
  • C = (6, 8)

Find the vectors from A to B, B to C and A to C:


\begin{aligned}AB = B - A &=(x_B-x_A,y_B-y_A) \\&=(-3-(-2), 8-4)\\& = (-1, 4) \end{aligned}


\begin{aligned}BC=C-B &=(x_C-x_B,y_C-y_B)\\ &=(6-(-3),8-8)\\&=(9,0)\end{aligned}


\begin{aligned}AC = C - A &=(x_C-x_A,y_C-x_A)\\&= (6-(-2), 8-4) \\&= (8, 4)\end{aligned}

Use Pythagoras Theorem to calculate the magnitudes of the vectors:


|AB| = √((-1)^2+4^2)=√(17)


|BC|=√(9^2+0^2)=9


|AC| = √(8^2+4^2)=4√(5)


\boxed{\begin{minipage}{6 cm}\underline{Dot Product of two vectors}\\\\$a \cdot b=|a||b| \cos \theta$\\\\where:\\ \phantom{ww}$\bullet$ $|a|$ is the magnitude of vector a. \\ \phantom{ww}$\bullet$ $|b|$ is the magnitude of vector b. \\ \phantom{ww}$\bullet$ $\theta$ is the angle between $a$ and $b$. \\ \end{minipage}}

Rearrange the dot product formula to make θ the subject:


\implies \theta=\cos^(-1)\left((a \cdot b)/(|a||b|)\right)

Use the rearranged dot product formula to find the angles between two pairs of vectors.


\boxed{\begin{minipage}{4 cm}\underline{Dot Product}\\\\$\textbf{u} \cdot \textbf{v}=u_1v_1+u_2v_2$\\\\where:\\ \phantom{ww}$\bullet$ $\textbf{u}=\left\langle u_1,u_2 \right\rangle$ \\\phantom{ww}$\bullet$ $\textbf{v}= \left\langle v_1,v_2 \right\rangle$ \\ \end{minipage}}

Angle A


\implies A=\cos^(-1)\left((AB \cdot AC)/(|AB||AC|)\right)


\implies A=\cos^(-1)\left((-1 \cdot 8+4 \cdot4)/(√(17) \cdot 4 √(5))\right)


\implies A=\cos^(-1)\left((8)/(4 √(85))\right)


\implies A=77.47^(\circ)\; \sf (2 \; d.p.)

Angle C


\implies C=\cos^(-1)\left((BC \cdot AC)/(|BC||AC|)\right)


\implies C=\cos^(-1)\left((9 \cdot 8+0 \cdot4)/(9 \cdot 4 √(5))\right)


\implies C=\cos^(-1)\left((72)/(36 √(5))\right)


\implies C=26.57^(\circ)\; \sf (2 \; d.p.)

Interior angles of a triangle sum to 180°.


\implies B=180^(\circ)-A-C


\implies B=180^(\circ)-77.47^(\circ)-26.57^(\circ)


\implies B=75.96^(\circ)

Therefore, the interior angles of the triangle with the given vertices are:

  • 77.47°
  • 75.96°
  • 26.57°
Use vectors to find the interior angles of the triangle with the given vertices. (Enter-example-1
User Igor Belyakov
by
2.9k points