13.9k views
4 votes
Use vectors to find the interior angles of the triangle with the given vertices. (Enter your answers as a comma-separated list. Enter your answers in terms of degrees. Round your answers to two decimal places.)

(−2, 4), (−3, 8), (6, 8)

Please Help ASAP

User VoiDnyx
by
7.9k points

1 Answer

4 votes

Answer:

77.47°

75.96°

26.57°

Explanation:

Given vertices of the triangle:

  • A = (−2, 4)
  • B = (−3, 8)
  • C = (6, 8)

Find the vectors from A to B, B to C and A to C:


\begin{aligned}AB = B - A &=(x_B-x_A,y_B-y_A) \\&=(-3-(-2), 8-4)\\& = (-1, 4) \end{aligned}


\begin{aligned}BC=C-B &=(x_C-x_B,y_C-y_B)\\ &=(6-(-3),8-8)\\&=(9,0)\end{aligned}


\begin{aligned}AC = C - A &=(x_C-x_A,y_C-x_A)\\&= (6-(-2), 8-4) \\&= (8, 4)\end{aligned}

Use Pythagoras Theorem to calculate the magnitudes of the vectors:


|AB| = √((-1)^2+4^2)=√(17)


|BC|=√(9^2+0^2)=9


|AC| = √(8^2+4^2)=4√(5)


\boxed{\begin{minipage}{6 cm}\underline{Dot Product of two vectors}\\\\$a \cdot b=|a||b| \cos \theta$\\\\where:\\ \phantom{ww}$\bullet$ $|a|$ is the magnitude of vector a. \\ \phantom{ww}$\bullet$ $|b|$ is the magnitude of vector b. \\ \phantom{ww}$\bullet$ $\theta$ is the angle between $a$ and $b$. \\ \end{minipage}}

Rearrange the dot product formula to make θ the subject:


\implies \theta=\cos^(-1)\left((a \cdot b)/(|a||b|)\right)

Use the rearranged dot product formula to find the angles between two pairs of vectors.


\boxed{\begin{minipage}{4 cm}\underline{Dot Product}\\\\$\textbf{u} \cdot \textbf{v}=u_1v_1+u_2v_2$\\\\where:\\ \phantom{ww}$\bullet$ $\textbf{u}=\left\langle u_1,u_2 \right\rangle$ \\\phantom{ww}$\bullet$ $\textbf{v}= \left\langle v_1,v_2 \right\rangle$ \\ \end{minipage}}

Angle A


\implies A=\cos^(-1)\left((AB \cdot AC)/(|AB||AC|)\right)


\implies A=\cos^(-1)\left((-1 \cdot 8+4 \cdot4)/(√(17) \cdot 4 √(5))\right)


\implies A=\cos^(-1)\left((8)/(4 √(85))\right)


\implies A=77.47^(\circ)\; \sf (2 \; d.p.)

Angle C


\implies C=\cos^(-1)\left((BC \cdot AC)/(|BC||AC|)\right)


\implies C=\cos^(-1)\left((9 \cdot 8+0 \cdot4)/(9 \cdot 4 √(5))\right)


\implies C=\cos^(-1)\left((72)/(36 √(5))\right)


\implies C=26.57^(\circ)\; \sf (2 \; d.p.)

Interior angles of a triangle sum to 180°.


\implies B=180^(\circ)-A-C


\implies B=180^(\circ)-77.47^(\circ)-26.57^(\circ)


\implies B=75.96^(\circ)

Therefore, the interior angles of the triangle with the given vertices are:

  • 77.47°
  • 75.96°
  • 26.57°
Use vectors to find the interior angles of the triangle with the given vertices. (Enter-example-1
User Igor Belyakov
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories