Answer:
k = 9
length of chord = 2/3
Explanation:
Equation of parabola:
![y=k (x-\frac13)^2](https://img.qammunity.org/2023/formulas/mathematics/college/wxjgb1b6q1mek5njd5vrs5moydb9g0w8vd.png)
Part 1
If the curve passes through point
, this means that when
,
![y = 1](https://img.qammunity.org/2023/formulas/mathematics/college/6bov8m4vnfrpo50dxvwz74jezq1tw4s3b3.png)
Substitute these values into the equation and solve for
:
![\implies 1=k \left(\frac23-\frac13\right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/8rykvbdo5hm91z281h2hyojb0pi1esuc03.png)
![\implies 1=k \left(\frac13 \right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/f27gnj2osywwgnzqqzsc1ko68ag2mcramj.png)
Apply the exponent rule
:
![\implies 1=k \left((1^2)/(3^2) \right)](https://img.qammunity.org/2023/formulas/mathematics/college/42he12kx8yp2dgejd0dhim9myltjsewpf4.png)
![\implies 1=(1)/(9)k](https://img.qammunity.org/2023/formulas/mathematics/college/or218ubdv2tnnce7n5v4vfrzpzi9fn38fr.png)
![\implies k=9](https://img.qammunity.org/2023/formulas/mathematics/college/3909sgutmksynfdecze0wrq5g3mtvipgut.png)
Part 2
- The chord of a parabola is a line segment whose endpoints are points on the parabola.
We are told that one end of the chord is at
and that the chord is horizontal. Therefore, the y-coordinate of the other end of the chord will also be 1. Substitute y = 1 into the equation for the parabola and solve for x:
![\implies 1=9 \left(x-\frac13 \right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/fig6n4ayl4ydwe2arj5wvpuc16ngd0hbin.png)
![\implies \frac19 = \left(x-\frac13 \right)^2](https://img.qammunity.org/2023/formulas/mathematics/college/n0hi09lmyhu19kxawi8n6umns5rzvqprsb.png)
![\implies √(\frac19) = x-\frac13](https://img.qammunity.org/2023/formulas/mathematics/college/u8e5clo3m6g67wqxhrnqznj94v571n6g27.png)
![\implies \pm \frac13 = x-\frac13](https://img.qammunity.org/2023/formulas/mathematics/college/tdpiwysnc40xtzk8duh7f5cphld6cty8vd.png)
![\implies x=\frac23, x=0](https://img.qammunity.org/2023/formulas/mathematics/college/5gbg9p8oz2pk2weo5uskrjt4v8ggexz9l3.png)
Therefore, the endpoints of the horizontal chord are: (0, 1) and (2/3, 1)
To calculate the length of the chord, find the difference between the x-coordinates:
![\implies \frac23-0=\frac23](https://img.qammunity.org/2023/formulas/mathematics/college/ha2twd2xegcm1fbtxsvsl2hswfuqrrkjwp.png)
**Please see attached diagram for drawn graph. Chord is in red**