99.5k views
5 votes
Using the diagram below, a reflection in line r is a transformation for which the following are true.

.
If a point A is on line r, then the image of A
is A itself (that is, A' = A).
Line of reflection.
B'
If a point B is not on line r, then r is the
perpendicular bisector of BB.

User Xxtesaxx
by
8.4k points

1 Answer

6 votes

Answer:

The diagram shows a line of reflection, labeled as "line r," and a point B on one side of the line. The image of point B, labeled as B', is shown on the other side of the line.

If point A is on line r, then the image of A would be A itself because a reflection in line r means that all points on the line remain unchanged.

If point B is not on line r, then line r would be the perpendicular bisector of line segment BB'. This means that line r would pass through the midpoint of line segment BB' and be perpendicular to it. The image of point B would be on the opposite side of line r from the original point B, but the distance between B and B' would remain the same.

User Keith Entzeroth
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories