49.7k views
7 votes
The sum of circumference and the radius of a circle is 51 cm, find the radius of the circle.​

User Jevaun
by
3.9k points

2 Answers

4 votes
Circumference + Radius = 51
2πr + r = 51
r(2π + 1) = 51
r =51/2π + 1
r=51/2(22/7) + 1
r=51/51/7
Cancel out the 51’s
r=7
Therefore, the radius of the circle is 7cm



User Kristian Spangsege
by
3.9k points
4 votes


\bf \dag \frak{ \gray{Given: }}


\\

  • Sum of radius and circumference of circle is 51 cm


\\ \\


\bf \dag \frak{ \gray{To \: find: }}


\\

  • Radius of circle


\\ \\

We know:-


\bigstar \boxed{ \rm Circumference~of~circle=2\pi r}


\\ \\


\star \underline \textsf{According to question : }


\\ \\


\hookrightarrow \sf Circumference~of~circle + radius = 51 \\


\\


\hookrightarrow \sf 2\pi r + r = 51 \\


\\ \\


\hookrightarrow \sf r( 2\pi +1) = 51 \\


\\ \\


\hookrightarrow \sf r( 2 * (22)/(7) +1) = 51 \\


\\ \\


\hookrightarrow \sf r( (44)/(7) +1) = 51 \\


\\ \\


\hookrightarrow \sf r \bigg( ((44 * 7)/(7) +1 * 7)/(7) \bigg) = 51 \\


\\ \\


\hookrightarrow \sf r \bigg( ((44 * \cancel7)/(\cancel7) +1 * 7)/(7) \bigg) = 51 \\


\\ \\


\hookrightarrow \sf r \bigg( ((44)/(1) +7)/(7) \bigg) = 51 \\


\\ \\


\hookrightarrow \sf r \bigg( (44 + 7)/(7) \bigg) = 51 \\


\\ \\


\hookrightarrow \sf r \bigg( (51)/(7) \bigg) = 51 \\


\\ \\


\hookrightarrow \sf r = 51 * (7)/(51) \\


\\ \\


\hookrightarrow \sf r = \cancel{ 51} * \frac{7}{ \cancel{51}} \\


\\ \\


\hookrightarrow \bf r =7 \: cm


\\ \\


\therefore \underline {\textsf{\textbf{radius \: of \: circle \: is \: \red{7 \: cm}}}}

User Rashidcmb
by
4.1k points