227k views
3 votes
Expand and simplify (x+2) (x+3) (x+4)

2 Answers

4 votes

Answer:

x^3 + 9x^2 + 26x + 24

Explanation:

Lets break this up into steps. Set brackets and do the opeartion within the brackets, in steps.

(x+2)(x+3)(x+4)

[(x+2)(x+3)](x+4)

[x^2 + 5x + 6](x+4)

(x+4)[x^2 + 5x + 6] I moved the (x+4) term in front for personal preference. This is telling us that we need to multiply [x^2 + 5x + 6] first by x and then by 4, and add the tworesults.

x(x^2 + 5x + 6)+4(x^2 + 5x + 6) Let E = (x^2 + 5x + 6)

x(E)+4(E)

(x^3 + 5x^2 + 6x) + (4x^2 + 20x + 24)

x^3 + 9x^2 + 26x + 24 Combine like terms

User Huma
by
4.6k points
3 votes

Answer:


x^3+9x^2+26x+24

Explanation:

First, distribute many times. Note that I used brackets to clarify what is about to be distributed in the next step.


(x+2) (x+3) (x+4)


= (x+2) \cdot \left[\frac{}{}(x+3)(x+4)\frac{}{}\right]


= x(x+3)(x+4)+2(x+3)(x+4)


= x(x+3)\cdot \left[ \frac{}{} x+4 \frac{}{}\right]+2(x+3)\cdot \left[\frac{}{}x+4\frac{}{}\right]


= x(x(x+4)+3(x+4))+2(x(x+4)+3(x+4))


= x\left(x \cdot\left[ \frac{}{}x+4\frac{}{}\right]+3\cdot\left[ \frac{}{}x+4\frac{}{}\right]\right)+2\left(x\cdot\left[ \frac{}{}x+4\frac{}{}\right]+3\cdot\left[ \frac{}{}x+4\frac{}{}\right] \right)


= x(x^2+4x+3x+12)+2(x^2+4x+3x+12)


= (x^3+4x^2+3x^2+12x)+(2x^2+8x+6x+24)

Then, combine like terms.


= x^3+(4x^2+3x^2+2x^2)+(12x+8x+6x)+24


= x^3+9x^2+26x+24

User Qiushuitian
by
4.7k points