101k views
0 votes
(-1,4),(4,-2) Write an equation in standard form for the line that passes through the given points, and the work

1 Answer

2 votes

Answer:

y = -(6/5)x + 2.8

Explanation:

We look for an equation of the form y=mx+b, where m is the slope and b the y-intercept (the value of y when x = 0).

Slope can be calculated with the two given points, (-1,4) and (4,-2). Slope (m) is also known as the "Rise/Run." Rise is the change in y for the Run, the change in x:

With the points in the order of (-1,4) and (4,-2), calculate both.

Rise = (-2 - 4) = -6 [Subtract the first value of y from the second]

Run = (4 - (-1)) = 5 [Subtract the first value of x from the second]

Rise/Run is the slope, m = (-6/5)

Now we can write y = -(6/5)x + b

To find b, enter either of the two given points and solve for b:

y = -(6/5)x + b

y = -(6/5)x + b for (-1,4)

4 = -(6/5)*(-1) + b

4 = (6/5) + b

b = 4 - (6/5)

b = 4 - 1.2

b = 2.8

The equation is y = -(6/5)x + 2.8

See attached graph.

(-1,4),(4,-2) Write an equation in standard form for the line that passes through-example-1
User ISmita
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories