221k views
2 votes
Consider line segment AB.

A: (-4, 10)
B: (6,2)
Find the coordinates of point P such that AP: PB is 2:3. Enter your answer as a DECIMAL, if
needed.

User Eyjo
by
3.3k points

1 Answer

2 votes

Answer:

P(0, 6.8)

Explanation:

  • Let (x, y) be the required coordinates of point P.


  • A(-4, \: 10) =(x_1, \: y_1)\: & \: B(6, \: 2) =(x_2,\: y_2)


  • AP : PB = 2:3 \implies m = 2 \: & \: n = 3

  • Now, by section formula of internal division, we have.


  • x=(mx_2+nx_1)/(m+n) \: & \: y=(my_2+ny_1)/(m+n)


  • \implies x=(2(6)+3(-4))/(2+3) \: & \: y=(2(2)+3(10))/(2+3)


  • \implies x=(12-12)/(5) \: & \: y=(4+30)/(5)


  • \implies x=(0)/(5) \: & \: y=(34)/(5)


  • \implies x=0 \: & \: y=6.8


  • \implies P(x,\:y) = P(0,\: 6.8)

  • Thus, the coordinates of point P are (0, 6.8).
User Gbehar
by
3.4k points