Answer:
![m\angle BDC = 68\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/mjdaeb66wvglrcedtxt1lm4cshqp4f02ko.png)
Explanation:
Using the given information, we can deduce that angles BDC and ADC are supplementary; their measures add to 180°.
This can be represented by the following equation:
![(-7x + 12)\textdegree + (-8x+48)\textdegree = 180\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/r5uqgbbcldiczr92z8zm6yucu42bj1mfbn.png)
First, solve for x.
![-15x\textdegree + (12 + 48)\textdegree = 180\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/svefgrwiev4cfmqbi1lxcas5c210o5a74i.png)
![-15x \textdegree = (180 - 60) \textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/8d9e1w6bpr65v6q3z3segz46p5tvgkdtfe.png)
![-15x\textdegree = 120\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/5phfuwij0qp4zg6i9zpvu6is7g797ho1bc.png)
![x\textdegree = -8\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/y6xuzzqc25ic0peje4ih284e97zn17l656.png)
![x = -8](https://img.qammunity.org/2023/formulas/mathematics/high-school/g9l6hxveb54nhe4fhbf5mbzt3pygyz68ph.png)
Then, substitute x into the expression for BDC.
![m\angle BDC = (-7x+12)\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/tbjm40vh2z2lt07rlglpcxt996sq4s5g11.png)
![m\angle BDC = (-7(-8) + 12)\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/kl18oa0l65d7ycoeilmn96geh801b7hye6.png)
![m\angle BDC = (56 + 12)\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/vxpqj7bn4g7mndptpiblgyvbto5olmro4a.png)
![m\angle BDC = 68\textdegree](https://img.qammunity.org/2023/formulas/mathematics/college/mjdaeb66wvglrcedtxt1lm4cshqp4f02ko.png)