Answer:
{9n+4z+96}{12}]
Explanation:
Combine multiplied terms into a single fraction
{3}{4}n+(8+{1}{3}
{3n}{4}+(8+{1}{3}
Combine multiplied terms into a single fraction
{3n}{4}+(8+{1}{3}z)
{3n}{4}+( 8+{3}
Multiply by 1
{3n}{4}+8+3}
{3n}{4}+( 8+3}
Find common denominator
{3n}{4}+8+3}
3n}{4}+{3\8}{3}+3}
Combine fractions with common denominator
{3n}{4}+3\8}{3}+{3}
{3n}{4}+8+3}
Multiply the number
{3n}{4}+8}+z}{3}\right)
{3n}{4}+24}+z}{3}\right)
Rearrange terms
{3n}{4}+{24+z}}{3}
{3n}{4}+24}}{3}\right)
Find common denominator
\frac{3n}{4}+\frac{z+24}{3}
\frac{3\cdot 3n}{12}+\frac{4(z+24)}{12}
Combine fractions with common denominator
{3\ 3n}{12}+\{4(z+24)}{12}
{3\ 3n+4(z+24)}12
Multiply the numbers
{3}n+4(z+24)}{12}
{9}n+4(z+24)}{12}
Distribute
{4(z+24)}}{12}
{4z+96}}{12}