162k views
0 votes
Hey please explain in it I stuck there please solve fast

If ( sin x + cosec x ) ² + ( cos x + sec x )² = k + tan² x + cot² x then what is the value of k.
a- 8
b - 7
c- 4
d-3
Don't Spam ​

2 Answers

4 votes


\huge{ \bold{Answer -: }}

Option b is correct

Explanation-:


\large \bf{given}


\large{ \sf{ \: (sin \: x \: + cosec \: x) {}^(2) + (cos \: x + sec \: x) {}^(2) }}


\large{ \sf{ = k + { \tan^(2) x + \cot^(2) x}}}


\large{ \sf{\implies \: sin {}^(2) x + cosec {}^(2) x + 2 + {cos}^(2) x + {sec}^(2) x + 2}}


\large{ \sf{ = k + {tan}^(2) x + {cot}^(2) x}}


\large{ \sf{ \implies \: 1 + {cosec}^(2) x - {cot}^(2) x + {sec}^(2) x - {tan}^(2) x + 4 = k}}


\large{ \sf{ \pink{ \implies \: 1 + 1 + 1 + 4 = k \implies \: k = 7}}}


\therefore \: k \: = 7

____________________

User Hiren Kagrana
by
3.4k points
3 votes

Answer:

b) 7

Explanation:

Given equation:


(\sin x + \csc x)^2+(\cos x + \sec x)^2=k+\tan^2 x + \cot^2 x

Expand the left side of the equation:


\implies \sin^2x+2 \sin x \csc x + \csc^2x + \cos^2 x + 2 \cos x \sec x + \sec^2 x

Simplify:


\implies \sin^2x+2 \sin x \cdot (1)/(\sin x) + \csc^2x + \cos^2 x + 2 \cos x \cdot (1)/(\cos x) + \sec^2 x


\implies \sin^2x+2 + \csc^2x + \cos^2 x + 2 + \sec^2 x


\implies \sec^2 x+\csc^2x+ \sin^2x + \cos^2 x +4

Use the identity: sin²x + cos²x = 1


\implies \sec^2 x+ \csc^2x+1+4


\implies \sec^2 x+ \csc^2x+5

Use the identities: sec²x = tan²x + 1 and csc²x = cot²x + 1


\implies \tan^2x +1 +\cot^2x +1 +5


\implies 7+\tan^2x + \cot^2x

Therefore:


(\sin x + \csc x)^2+(\cos x + \sec x)^2=7+\tan^2 x + \cot^2 x

User Boris Dalstein
by
3.6k points