220k views
5 votes
Find A mass of 10 kg is moving in a circular path of radius 2 m with a uniform speed of 50 ms the centripetal acceleration and the corresponding centripetal force​

User Kitze
by
4.3k points

1 Answer

4 votes

Answer:

Centripetal acceleration:
1250\; {\rm m\cdot s^(-2)}.

Resultant force on the object should be
12500\; {\rm N}.

(Assuming that the speed of the object is
50\; {\rm m\cdot s^(-1)}.)

Step-by-step explanation:

For an object that travels along a circle path of radius
r at a speed of
v, (centripetal) acceleration will be
a = (v^(2) / r).

In this example, speed is
v = 50\; {\rm m\cdot s^(-1)} while the radius of the circular path is
r = 2\; {\rm m}. The (centripetal) acceleration of this object will be:


\begin{aligned}a &= (v^(2))/(r) \\ &= \frac{(50\; {\rm m\cdot s^(-1)})^(2)}{(2\; {\rm m})} \\ &= 1250\; {\rm m\cdot s^(-2)}\end{aligned}.

For an object of mass
m, the resultant force to achieve acceleration
a is
F(\text{net}) = m\, a. In this example,
m = 10\; {\rm kg} while
a = 1250\; {\rm m\cdot s^(-2)}. The required resultant force will be:


\begin{aligned}F(\text{net}) &= m\, a \\ &= (10\; {\rm kg})\, (1250\; {\rm m\cdot s^(-2)}) \\ &= 12500\; {\rm kg \cdot m\cdot s^(-2)} \\ &= 12500\; {\rm N} \end{aligned}.

User Goosebumps
by
4.5k points