Answer:
93.2° (nearest tenth)
Explanation:
![\boxed{\begin{minipage}{7.6 cm}\underline{Sine Rule} \\\\\\$(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c) $\\\\\\where:\\ \phantom{ww}$\bullet$ $A, B$ and $C$ are the angles. \\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides opposite the angles.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rkg49ossc923cae0oun1i50f4htg55r0ux.png)
From inspection of the given triangle:
Substitute the values into the sine rule to find the measure of angle C:
![\implies (\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdp9lb2x9grjvn9cxvp7kwzrijfq003q74.png)
![\implies (\sin 38^(\circ))/(9)=(\sin C)/(11)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r8aymey0tg621zbytj65nejqbzedd2w4jg.png)
![\implies \sin C=(11\sin 38^(\circ))/(9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a0zen1821p9ysdm4hxx1qnvotsnprbufnr.png)
![\implies C=\sin ^(-1) \left((11\sin 38^(\circ))/(9)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ev3ywaaay96ig0nz5gbkdi44rcny74ysp3.png)
![\implies C=48.80523914...^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bw17wualzqh2auzurfb0z0ibf0rven3jtc.png)
Interior angles of a triangle sum to 180°.
![\implies A+B+C=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/trwr0jqphwm2pkxscqapmtnlhspi9zcfy4.png)
![\implies A+38^(\circ)+48.80523914...^(\circ)=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dwvbo52rfuybyuepv6tprk2b9e0iyx49gh.png)
![\implies A=93.19476086...^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/73kuzdfi2orsp2tpgw0te2078f4lgev08i.png)
Therefore, the size of angle A is 93.2° (nearest tenth).