Answer:
42
Explanation:
Given function:
![f(x)=4x^4-2x^3-3x^2+3x](https://img.qammunity.org/2023/formulas/mathematics/high-school/3c2bvulepz6ctn575maqlt7odkobirr2bz.png)
Use the method of synthetic substitution to find the value of the function when x = 2.
Place the value of x in the left box and write the coefficients of the function in descending order, remembering to write a zero for the coefficient of any missing term.
(As there is no constant term in this function, the last coefficient should be written as zero).
![4x^4-2x^3-3x^2+3x](https://img.qammunity.org/2023/formulas/mathematics/high-school/4eutaibkrtmm5r3vny6yvdqab885eafcx2.png)
![\begin{array}c2&4&\:\:-2&\;\;-3&\;\:\:\:\:3&\;\;0\\\cline{1-1} \end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d1uf3uegvja9ig9cesafvoazns9rfr8isj.png)
Bring the leading coefficient down:
![\begin{array}ccccc2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &&&\\\cline{2-6}&4\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpgutkk1kits6zhef2ikgdf1oonbz3iuim.png)
Multiply the number you brought down with the number in the box and put the result in the next column (under the -2):
![\begin{array}rrrrr2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &8&&\\\cline{2-6}&4\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uoiudk0sszqvl6835weno1inrmf51rx0fk.png)
Add the two numbers in the second column together and put the result under them in the bottom row:
![\begin{array}c2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &8&&\\\cline{2-6}&4&6\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nlfk9ggri62ug02rdl7u3iq1xxvkve7y6l.png)
Repeat:
![\begin{array}rrrrr2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &8&12&\\\cline{2-6}&4&6&9\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k0q09iaw6o13hcfh8i4awe4wrueoxck56v.png)
![\begin{array}rrrrr2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &8&12&18\\\cline{2-6}&4&6&9&21\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b2u5npen0sslg3ty5zjwxtg5wt6eqy8tu4.png)
![\begin{array}c2 &4&-2&-3&3&0\\\cline{1-1}&\downarrow &8&12&18&42\\\cline{2-6}&4&6&9&21&42\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hij39irii8y4o20nmp555v3w2gtybhe7dj.png)
The last value, 42, is the value of the function when x is 2.
Therefore,
![f(2)=4x^4-2x^3-3x^2+3x=42](https://img.qammunity.org/2023/formulas/mathematics/high-school/1d24icx0edprznk6t4fooq66tmuwwqddln.png)