47.3k views
0 votes
Give 3 examples each.​

Give 3 examples each.​-example-1

1 Answer

4 votes

Answer:

see below

Explanation:

You want examples of use of the rules of logarithms:


\begin{array}{ll}\vphantom{(M)/(gN)}1.&\log_b{(MN)}=\log_b{(M)}+\log_b{(N)}\\2.&\log_b{\left((M)/(N)\right)}=\log_b{(M)}-\log_b{(N)}\\\vphantom{(b)/(g)}3.&\log_b{(M^a)}=a\cdot\log_b{(M)}\end{array}

The point of these is that M and N and 'a' and 'b' can be anything. (Generally, 'b' will be a positive number greater than 1.) For the purpose here, we can let M ∈ {x^3y, (1+r)}, N ∈ {(x-4), r/n}, a ∈ {4, -3}, b ∈ {2, e}.

Using these values in various combinations, your examples could be ...

1. Product rule


\log_2{((x^3y)(x-4))}=\log_2{(x^3y)}+\log_2{(x-4)}\\\\ln(((1+r)(r/n)))=ln((1+r))+ln((r/n))\\\\ \log_2{((x^3y)(r/n))}=\log_2{(x^3y)}+\log_2{(r/n)}

2. Quotient rule


\log_2{\left((x^3y)/(x-4)\right)}=\log_2{(x^3y)}-\log_2{(x-4)}\\\\\\\ln{\left((1+r)/(r/n)\right)}=ln((1+r))-(ln((r))-ln((n)))\\\\\\ \log_2{\left((x^3y)/(r/n)\right)}=\log_2{(x^3y)}-(\log_2{(r)}-\log_2{(n)})}

3. Power rule


ln((x^3y)^4)=4\ln(x^3y)=4(3ln((x))+ln((y))=12ln((x))+4ln((y))\\\\\log_2{(1+r)^(-3)}=-3\log_2{(1+r)}\\\\\log_2{(x^3y)^(-3)}=-3\log_2{(x^3y)}=-9\log_2{(x)}-3\log_2{(y)}

User Moumit
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories