Answer:
a) $153,850
b) $779.54
c) $873.54
Explanation:
Part a)
![\begin{aligned}\textsf{Loan amount}&=\textsf{Cost of property}-\textsf{Down payment}\\&=181000-(181000 * 0.15)\\&=181000-27150\\&=153850\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/c8tjpopbp3grfmn7juvuo7upluiafv9po5.png)
Therefore, the loan amount is $153,850.
Part b)
![\boxed{\begin{minipage}{8.5 cm}\underline{Monthly Payment Formula}\\\\$PMT=(Pi\left(1+i\right)^n)/(\left(1+i\right)^n-1)$\\\\where:\\\\ \phantom{ww}$\bullet$ $P =$ loan amount \\\phantom{ww}$\bullet$ $i =$ interest rate per month (in decimal form) \\\phantom{ww}$\bullet$ $n =$ term of the loan (in months) \\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/kqgh9dm91q6d9emyukuoszw8ra0uk5jr6g.png)
Given:
- P = $153,850
- i = 0.045 per year = 0.045/12 per month
- n = 30 years = 360 months
Substitute the given values into the Monthly Payment formula and solve for PMT:
![\implies \sf PMT=(153850 \cdot (0.045)/(12)\left(1+(0.045)/(12)\right)^(360))/(\left(1+(0.045)/(12)\right)^(360)-1)](https://img.qammunity.org/2023/formulas/mathematics/college/btdvsg7dcrmkkxn5jc10dwjlopl5h7hw9n.png)
![\implies \sf PMT=(153850 \cdot 0.00375\left(1.00375\right)^(360))/(\left(1.00375\right)^(360)-1)](https://img.qammunity.org/2023/formulas/mathematics/college/21dz3iswkxi3uoqegpl09r0ksnvh0sqxrd.png)
![\implies \sf PMT=779.5353492](https://img.qammunity.org/2023/formulas/mathematics/college/uoxwcdsjixpzzwjoh8jcmymbu1udwgcp44.png)
Therefore, the monthly payments would be $779.54.
Part c)
Given:
- P = $153,850
- i = 0.055 per year = 0.055/12 per month
- n = 30 years = 360 months
Substitute the given values into the Monthly Payment formula and solve for PMT:
![\implies \sf PMT=(153850 \cdot (0.055)/(12)\left(1+(0.055)/(12)\right)^(360))/(\left(1+(0.055)/(12)\right)^(360)-1)](https://img.qammunity.org/2023/formulas/mathematics/college/9cv716e27adv5x0e9whsikg8bedw649dqo.png)
![\implies \sf PMT=873.5433786](https://img.qammunity.org/2023/formulas/mathematics/college/entdu9zen8ibi1d1nctljng6fuzvqb0r1i.png)
Therefore, the monthly payments would be $873.54.