Answer:
25g
Step-by-step explanation:
According to a quick internet search, the half-life of I-131 is 8 days.
The amount left after 16 days can be calculated with the radioactive exponential decay formula:
![A_(_t_)=A_0e^(^(\ln(.5))/(T)^)^t](https://img.qammunity.org/2023/formulas/physics/college/h4cb7kl93rejbsznt8413jybw95g0iqlit.png)
Where:
= the amount left as a function of time
= the original amount (100g)
T = the half-life of the isotope (8d)
t = time (16d)
So:
![A_(_t_)=A_0e^(^(\ln(0.5))/(T)^)^t\\A_(_t_)=(100g)e^(^(\ln(0.5))/(8d)^)^(^1^6^d^)\\A_(_t_)=(100g)e^-^2^(^\ln(2))](https://img.qammunity.org/2023/formulas/physics/college/9hc1qgjwbil1dpdmgqmw7lqf6t8aas2766.png)
![A_(_t_)=25g](https://img.qammunity.org/2023/formulas/physics/college/fj9yciogqgrrxsr4vvfbd98e31mm8kgpan.png)
This answer is intuitive because the isotope has been through two half-lives:
![100g((1)/(2))((1)/(2))=25g](https://img.qammunity.org/2023/formulas/physics/college/8m3rh5e7wfn6q9g7nys18m7ebnp0l50ugv.png)