151k views
1 vote
Cos \theta =-(5)/(13) ∅and sin θ > 0. Identify the quadrant of θ and find sin θ.

Cos \theta =-(5)/(13) ∅and sin θ > 0. Identify the quadrant of θ and find sin θ.-example-1

1 Answer

6 votes

Answer: D. Qufdrant: II

sinΘ=12/13

Explanation:


\displaystyle\\cos\theta=-(5)/(13) \ \ \ \ sin\theta > 0\\\\sin^2\theta+cos^2\theta=1\\\\sin^2\theta=1-cos^2\theta\\\\sin\theta=б√(1-cos^2\theta) \\\\sin\theta > 0, \ \ hence\\\\sin\theta=√(1-cos^2\theta) \\\\sin\theta=\sqrt{1-(-(5)/(13))^2 } \\\\sin\theta=\sqrt{1-(25)/(169) } \\\\sin\theta=\sqrt{(169-25)/(169) } \\\\sin\theta=\sqrt{(144)/(169) } \\\\sin\theta=(12)/(13)


\displaystyle\\\left \{ {{cos\theta < 0} \atop {sin\theta > 0}} \right. \ \ \ \ \Rightarrow\ \ \ \ quadrant\ II

User Sean Beach
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories