91.3k views
2 votes
A new car purchased for $20.000 decreases by 10% each year. Write an exponential decay

model for the car. Then determine how long it will take the value of the car to decrease to $7000.

User Lysander
by
8.3k points

1 Answer

6 votes


\qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{current amount}\\ P=\textit{initial amount}\dotfill &20000\\ r=rate\to 10\%\to (10)/(100)\dotfill &0.1\\ t=years\\ \end{cases} \\\\\\ A=20000(1 - 0.1)^(t) \implies A=20000(0.9)^t

how long till it's $7000?


\qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{current amount}\dotfill &7000\\ P=\textit{initial amount}\dotfill &20000\\ r=rate\to 10\%\to (10)/(100)\dotfill &0.1\\ t=\textit{elapsed time} \end{cases} \\\\\\ 7000=20000(1 - 0.1)^(t) \implies \cfrac{7000}{20000}=0.9^t\implies \cfrac{7}{20}=0.9^t


\log\left( \cfrac{7}{20} \right)=\log(0.9^t)\implies \log\left( \cfrac{7}{20} \right)=t\log(0.9) \\\\\\ \cfrac{\log\left( (7)/(20) \right)}{\log(0.9)}=t\implies 9.96\approx t \qquad \textit{about 9 years and 11 months}

User Viet Nguyen
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories