104k views
5 votes
M is the midpoint of AC. A is (3, -9) and C is (-5, 16). Solve for the following

1 Answer

3 votes

Answer:


M=\left(-1, (7)/(2) \right)

Explanation:


\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}

Given endpoints:

  • A (3, -9)
  • C (-5, 16)

Substitute the given points in the midpoint formula:


\implies M=\left((x_C+x_A)/(2), (y_C+y_A)/(2) \right)


\implies M=\left((-5+3)/(2), (16+(-9))/(2) \right)


\implies M=\left((-2)/(2), (7)/(2) \right)


\implies M=\left(-1, (7)/(2) \right)

User Fantarama
by
5.6k points