176k views
3 votes
If x>0, then x^(3/4)/x^(-¼)
HELPP PLEASEEE

User Lawchit
by
8.4k points

2 Answers

4 votes

Answer:


\large\text{$\frac{x^{\left((3)/(4)\right)}}{x^{\left(-(1)/(4)\right)}}=x$}

Explanation:

Given expression:


\large\text{$\frac{x^{\left((3)/(4)\right)}}{x^{\left(-(1)/(4)\right)}}$}


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies \large\text{$x^{\left((3)/(4)-\left(-(1)/(4)\right)\right)}$}

Simplify:


\implies \large\text{$x^{\left((3)/(4)+(1)/(4)\right)}$}


\implies \large\text{$x^{\left((4)/(4)\right)}$}


\implies \large\text{$x^(1)$}


\textsf{Apply exponent rule} \quad a^1=a:


\implies \large\text{$x$}

User Maximas
by
8.1k points
3 votes

Answer:

x

Explanation:

using the rule of exponents


(a^(m) )/(a^(n) ) =
a^((m-n))

given


\frac{x^{(3)/(4) } }{x^{-(1)/(4) } }

=
x^{(3)/(4)-(-(1)/(4)) }

=
x^{((3)/(4)+(1)/(4)) }

=
x^(1)

= x

User Royden
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories