176k views
3 votes
If x>0, then x^(3/4)/x^(-¼)
HELPP PLEASEEE

User Lawchit
by
4.6k points

2 Answers

4 votes

Answer:


\large\text{$\frac{x^{\left((3)/(4)\right)}}{x^{\left(-(1)/(4)\right)}}=x$}

Explanation:

Given expression:


\large\text{$\frac{x^{\left((3)/(4)\right)}}{x^{\left(-(1)/(4)\right)}}$}


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies \large\text{$x^{\left((3)/(4)-\left(-(1)/(4)\right)\right)}$}

Simplify:


\implies \large\text{$x^{\left((3)/(4)+(1)/(4)\right)}$}


\implies \large\text{$x^{\left((4)/(4)\right)}$}


\implies \large\text{$x^(1)$}


\textsf{Apply exponent rule} \quad a^1=a:


\implies \large\text{$x$}

User Maximas
by
4.1k points
3 votes

Answer:

x

Explanation:

using the rule of exponents


(a^(m) )/(a^(n) ) =
a^((m-n))

given


\frac{x^{(3)/(4) } }{x^{-(1)/(4) } }

=
x^{(3)/(4)-(-(1)/(4)) }

=
x^{((3)/(4)+(1)/(4)) }

=
x^(1)

= x

User Royden
by
4.1k points