Answer:
When l = 4m , breadth is 8m
When l = 8m , breadth is 4m .
Explanation:
Here it is given that the area of a rectangular patch is 32m² . If we assume length to be l and breadth to be b , then ;
![\longrightarrow Area_(rectangle)=length* breadth\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/zr7jogyzbj0p9e43rqgg4ujjruo1deg1it.png)
![\longrightarrow 32m^2 = lb \dots (i)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cig8i7sfzt6ko0vkv6z4zeyras4c1aoisy.png)
Again , it's given that the perimeter is 24m .We know that perimeter of a rectangle is ,
![\longrightarrow Perimeter = 2(l+b)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/395m014lonqxmlwf51742jita7gczm8z1x.png)
![\longrightarrow 24 = 2( l +b)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/tvf6g1n18y0l1z1w0p9prgowlcyaaifvd2.png)
![\longrightarrow l + b = 12\dots (ii)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ihgb6q696moe563tcnwcc4ce04q6ft8nen.png)
From equation (i) and (ii) , we have ;
![\longrightarrow l + (32)/(l)=12\\\\\longrightarrow (l^2+32)/(12)=1\\\\\longrightarrow l^2+32=12l \\\\\longrightarrow l^2-12l +32=0\\\\\longrightarrow l^2-4l -8l +32=0 \\\\\longrightarrow l( l -4) -8(l-4)=0\\\\\longrightarrow(l-4)(l-8)=0 \\\\\longrightarrow \underline{\underline{ l = 4,8}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y1pivop99wn05jro0cm1uql15bvlhvi59w.png)
Therefore , we can find breadth as,
![\longrightarrow l + b =12\\\\\longrightarrow b = 12 - l \\\\\longrightarrow b = 12-8, 12-4\\\\\longrightarrow \underline{\underline{b = 4,8}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1mx8fa1jnypgfyjo8liiqb26j71bs012b3.png)