Answer:
3. ∛200 = ∛20∛10 = ∛8∛25
4. √72 = √3√24 = √36√2
5. ∛200 = 2∛25
6. √72 = 6√2
Explanation:
You want the radicals ∛200 and √72 each written in two different forms, one of which simplifies to the product of an integer and a radical. Then you want to see that simplified product.
Exponent rules
One of the rules of exponents is that a power of a product is the product of the powers:
(ab)^c = (a^c)(b^c)
A radical is equivalent to a fractional exponent.
![\sqrt[n]{a}=a^{(1)/(n)}\\\\√(a)=a^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qlqpg1fdgf1qtr77g4n825qdd0b3p7lego.png)
Combining these, we get ...
![\sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/1ljq5vveefkei4lmsba5i408c4vgp4yxgq.png)
3.
![\sqrt[3]{200}=\sqrt[3]{20}\sqrt[3]{10}\\\\\sqrt[3]{200}=\sqrt[3]{8}\sqrt[3]{25}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5axrhkr7vuhvif07jss9x51apv90beecur.png)
4.
![√(72)=√(3)√(24)\\\\√(72)=√(36)√(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fet7p3atry4ojpp117ycabcaxqfgfrj28e.png)
5.
![\sqrt[3]{200}=\boxed{2\sqrt[3]{25}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/in8m3045ic51vcbfpoqwi732to5pxfyxzt.png)
6.
![√(72)=\boxed{6√(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y7385k0o6jw40knds6xbvktl60jllk9rp3.png)