210k views
2 votes
Find the term in x^7 in the expansion of (1 − x)^5 (3 + 2x)³

1 Answer

5 votes

Answer:

4x^7

Explanation:

(1-x)³ (1-x)² (8x³ + 27 + 36x² + 54x)

(-x³+ 1 + 3x² - 3x) (x²+ 1 -2x) (8x³ + 27 + 36x² + 54x)

(-x^5 + 3x^4 - 3x³ + x² - x³ + 1 + 3x² - 3x + 2x^4 - 2x-6x³ +6x²) (8x³ + 27 + 36x² + 54x)

(-x^5 + 5x^4 -10x³ + 10x² -5x + 1) (8x³ + 27 + 36x² + 54x)


-8x^8 + 40x^7 - 80x^6 + 80x^5 - 40x^4 + 8x^3 - 27x^5 + 135x^4 -270x^3+ 270x^2- 135x + 27 - 36x^7+ 180x^6 - 360x^5 + 360x^4 - 180x^3 + 36x^2 - 54x^6 + 270x^5 - 540x^4 + 540x^3 - 270x^2 + 54x


27 - 81 x + 36 x^2 + 98 x^3 - 85 x^4 - 37 x^5 + 46 x^6 + 4 x^7 - 8 x^8

User Belek
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories