186k views
3 votes
If x+
(1)/(x)=
√(11), find
x^(3)+
(1)/(x^(3))

1 Answer

5 votes

Given that ,
x +(1)/(x)=√(11)

And we are interested in finding out the value of
x^3+(1)/(x^3)

Taking the given equation,


\longrightarrow x +(1)/(x)=√(11)

cube both the sides ,


\longrightarrow \left( x +(1)/(x)\right)^3=(√(11))^3\\

simplify using identity,


\longrightarrow x^3+(1)/(x^3)+3(x)\bigg((1)/(x)\bigg)\bigg( x +(1)/(x)\bigg)=11√(11)\\


\longrightarrow x^3+(1)/(x^3)+3√(11)= 11√(11)\\


\longrightarrow x^3+(1)/(x^3)=11√(11)-3√(11)\\


\longrightarrow \boxed{x^3+(1)/(x^3)= 8√(11) }

And we are done!

User Zdd
by
4.9k points