Answer:
Proof below.
Explanation:
General form of a geometric sequence:
![\boxed{a_n=ar^(n-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/ajxzfayw7mtp6jsgavggd1v0rkn5f34931.png)
Where:
is the nth term.- a is the first term.
- r is the common ratio.
- n is the position of the term.
If the pth, qth, rth terms of the geometric progression are a, b, c respectively, then:
![a_p=ar^(p-1)=a](https://img.qammunity.org/2023/formulas/mathematics/college/smb50wqugyrax6tyeurj28xwo5ra3p0l7o.png)
![a_q=ar^(q-1)=b](https://img.qammunity.org/2023/formulas/mathematics/college/g2scsh7b0vz3epkvq1ewxl88ik1avxgdj7.png)
![a_r=ar^(r-1)=c](https://img.qammunity.org/2023/formulas/mathematics/college/k42octitkvyaroqkc73m519pszt80a8fxy.png)
Substitute the expressions for a, b and c into the LHS of the given equation and solve:
![\large\begin{aligned} a^(q-r)\cdot b^(r-p)\cdot c^(p-q)&=(ar^(p-1))^(q-r)\cdot(ar^(q-1))^(r-p) \cdot (ar^(r-1))^(p-q)\\\\&=a^((q-r))\cdot r^((p-1)(q-r))\cdot a^((r-p)) \cdot r^((q-1)(r-p)) \cdot a^((p-q)) \cdot r^((r-1)(p-q))\\\\&=a^((q-r))\cdot a^((r-p)) \cdot a^((p-q)) \cdot r^((p-1)(q-r))\cdot r^((q-1)(r-p))\cdot r^((r-1)(p-q))\\\\&=a^((q-r)+(r-p)+(p-q))\cdot r^((p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q))\\\\&=a^(0)\cdot r^((pq-pr-q+r)+(rq-pq-r+p)+(pr-rq-p+q))\\\\&=a^0\cdot r^(0)\\\\&=1\cdot 1\\\\&=1\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/fkpss303oe96458302mvmds73t35w7omfm.png)
Hence proving that:
![a^(q-r)\cdot b^(r-p)\cdot c^(p-q)=1](https://img.qammunity.org/2023/formulas/mathematics/college/e5nmuiui4bt3wgv7auichpkr7oqbbqtkve.png)
------------------------------------------------------------------------
Exponent rules used:
![(a^b)^c=a^(bc)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bil89kfwypg1os2eawokw4umy0x09casvp.png)
![a^b \cdot a^c=a^(b+c)](https://img.qammunity.org/2023/formulas/mathematics/college/fdvacfx6ufjcyxzlf1necjcuiwf1svqz7m.png)
![a^0=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/47sozngq0dypmndbhp4xows0l3w61g02g5.png)