Answer:
![(a^(3) b^(15)c^(6))/(2^(15)d^(27))](https://img.qammunity.org/2023/formulas/mathematics/high-school/j449ti5d7w9nyv0qryrstyetfmrerbchuq.png)
Explanation:
Given expression:
![\left[(2^(-3)ab^0(c^(-2)d^3)^(-2))/(2^2a^0(b^5c^(-2))^(-1)d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/f379iw2gd45jr8i3ld2bwt9g1vq9rpulj2.png)
Following the order of operations, begin by applying exponent rules to the parentheses in the numerator and denominator.
![\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):](https://img.qammunity.org/2023/formulas/mathematics/high-school/eygpyvtdb51ymkn6mq1awi06f984obevsn.png)
![\implies \left[(2^(-3)ab^0c^((-2 \cdot -2))d^((3 \cdot -2)))/(2^2a^0b^((5 \cdot -1))c^((-2 \cdot -1))d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/yz6cmin8m53c1iahkso2ta0lqzf44b71tx.png)
![\implies \left[(2^(-3)ab^0c^(4)d^(-6))/(2^2a^0b^(-5)c^(2)d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/azsiv1sdikkur0cmgc3gmyiqglo23x63o0.png)
Notice there are two terms with a zero exponent.
![\textsf{Apply exponent rule} \quad a^0=1:](https://img.qammunity.org/2023/formulas/mathematics/high-school/wkfas2arg6ga5kcfkm4n45130tjwexpwvx.png)
![\implies \left[(2^(-3)a(1)c^(4)d^(-6))/(2^2(1)b^(-5)c^(2)d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/2dsper9c50rfuojlf3sp1slv5g95ifpky0.png)
![\implies \left[(2^(-3)ac^(4)d^(-6))/(2^2b^(-5)c^(2)d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/rc4q7ikxez80ayu7tekbwld4t5y9j6ueoc.png)
Separate the terms:
![\implies \left[(2^(-3))/(2^2) \cdot (a)/(b^(-5)) \cdot (c^(4))/(c^(2)) \cdot (d^(-6))/(d^3) \right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/w76wj4lyg8c12ibl4k8otgneqgp2ywammy.png)
![\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):](https://img.qammunity.org/2023/formulas/mathematics/high-school/5h5trjfb1d4qmboa74pzgox9tdx1d7gzhs.png)
![\implies \left[2^((-3-2)) \cdot (a)/(b^(-5)) \cdot c^((4-2)) \cdot d^((-6-3))\right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/duyvleupc1jg3kodlb5cq3wte7br9epdxf.png)
![\implies \left[2^(-5) \cdot (a)/(b^(-5)) \cdot c^(2) \cdot d^(-9)\right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/71cu1ei5x8msz05fqp5z8yu1so3cfmcp93.png)
![\textsf{Apply exponent rule} \quad (1)/(a^(-n))=a^n:](https://img.qammunity.org/2023/formulas/mathematics/high-school/7dz7uerre8sostbg4exsdmqb5b5epzq9zx.png)
![\implies \left[2^(-5) \cdot a \cdot b^(5) \cdot c^(2) \cdot d^(-9)\right]^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/9zsfldau0fgr5k8immk5fn1ispb02pu1w5.png)
![\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):](https://img.qammunity.org/2023/formulas/mathematics/high-school/eygpyvtdb51ymkn6mq1awi06f984obevsn.png)
![\implies 2^((-5 \cdot 3)) \cdot a^((1\cdot 3)) \cdot b^((5\cdot 3)) \cdot c^((2\cdot 3)) \cdot d^((-9\cdot 3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/bw8npg6q5hkmgbvtve4pcngaa8tnh4m94a.png)
![\implies 2^(-15) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot d^(-27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/34vewygrmculflx1e81hmxt6rgse5pd9la.png)
![\implies 2^(-15) a^(3) b^(15) c^(6) d^(-27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dkj4bbegk7mhy8n0rj6s491dvs4o6prelk.png)
To give the expression as a rational with positive exponents,
![\textsf{apply exponent rule} \quad a^(-n)=(1)/(a^(n)):](https://img.qammunity.org/2023/formulas/mathematics/high-school/pi269dbhteqfbziczk2pzjs912b3wzka8q.png)
![\implies (1)/(2^(15)) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot (1)/(d^(27))](https://img.qammunity.org/2023/formulas/mathematics/high-school/h78fznxrsj6suo42upxwqfqao7nvvtpcvb.png)
![\implies (a^(3) b^(15)c^(6))/(2^(15)d^(27))](https://img.qammunity.org/2023/formulas/mathematics/high-school/5qjfelnv3gzeh39ct0yuqixbu9tf1ysep9.png)
Note: I have left 2¹⁵ as an exponent with base 2. As 2¹⁵ = 32768, you can substitute 2¹⁵ for 32768 in the final answer, if you so wish.