10.3k views
1 vote
Simplify
^3✓-8x^24 y^36

2 Answers

1 vote


\sqrt[3]{-8x^(24)y^(36)} = \sqrt[3]{-8}\cdot \sqrt[3]{x^(24)}\cdot \sqrt[3]{y^(36)}


\sqrt[3]{8}=-2 because
(-2)(-2)(-2)= -8


\sqrt[3]{x^(24)}=x^8 because
(x^8)(x^8)(x^8)=x^(24)


\sqrt[3]{y^(36)}=y^(12) because
(y^(12))(y^(12))(y^(12))=y^(36)

Therefore
\sqrt[3]{-8x^(24)y^(36)} = -2x^8y^(12)

User Bold Bat
by
4.3k points
5 votes

Answer:


-2x^8y^(12)

Explanation:

Given expression:


\sqrt[3]{-8x^(24)y^(36)}


\textsf{Apply radical rule} \quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}:


\implies \sqrt[3]{-8}\sqrt[3]{x^(24)}\sqrt[3]{y^(36)}


\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{(1)/(n)}:


\implies \left(-8\right)^{(1)/(3)}\left(x^(24)\right)^{(1)/(3)}\left(y^(36)\right)^{(1)/(3)}

Rewrite 8 as 2³:


\implies \left(-2^3\right)^{(1)/(3)}\left(x^(24)\right)^{(1)/(3)}\left(y^(36)\right)^{(1)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies -2^{(3)/(3)}x^{(24)/(3)}y^{(36)/(3)}

Simplify:


\implies -2x^8y^(12)

User Es Cologne
by
4.6k points