185k views
0 votes
Set up the triple Integral SI V over the tetrahedron formed by the coordinate planes and the plane X + y + 24 using six different orders of Integration de dy dx dx dy dy do dy dx de ar ddy dr dy (b) Find the volume of the tetrahedron.

1 Answer

6 votes

Explanation:

For Part A:

Refer to the photo for an explanation on how to graph z=x+y+24 and how to set up the first integral. I will not explain how to do the other five but I have placed them beneath....


\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \,\int\limits^(z-y-24)_0 {} \, 1dxdydz \\\\

Where limits are,
0\leq x\leq z-y-24\\0\leq y\leq z-24\\0\leq z\leq 24


\int\limits^(-24)_0 {} \,\int\limits^(y+24)_0 {} \,\int\limits^(z-y-24)_0 {} \, 1dxdzdy\\\\

Where limits are,
0\leq x\leq z-y-24\\0\leq z\leq y+24\\0\leq y\leq -24


\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \,\int\limits^(z-x-24)_0 {} \, 1dydxdz\\\\

Where limits are,
0\leq y\leq z-x-24\\0\leq x\leq z-24\\0\leq z\leq 24


\int\limits^(-24)_0 {} \,\int\limits^(x+24)_0 {} \,\int\limits^(z-x-24)_0 {} \, 1dydzdx\\\\

Where limits are,
0\leq y\leq z-x-24\\0\leq z\leq x+24\\0\leq x\leq -24


\int\limits^(-24)_0 {} \,\int\limits^(-y-24)_0 {} \,\int\limits^(x+y+24)_0 {} \, 1dzdxdy\\\\

Where limits are,
0\leq z\leq x+y+24\\0\leq x\leq -y-24\\0\leq y\leq -24


\int\limits^(-24)_0 {} \,\int\limits^(-x-24)_0 {} \,\int\limits^(x+y+24)_0 {} \, 1dzdydx

Where Limits are,
0\leq z\leq x+y+24\\0\leq y\leq -x-24\\0\leq x\leq -24

For Part B:

All the above limits equal the same volume. So I will just solve for one of the limits.

Evaluate,
\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \,\int\limits^(z-y-24)_0 {} \, 1dxdydz \\\\


\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \, (x]^(z-y-24) _0){} dydz \\\\


\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \, [(z-y-24)-0]{} dydz \\\\


\int\limits^(24)_0 {} \,\int\limits^(z-24)_0 {} \,z-y-24{} dydz \\\\


\int\limits^(24)_0 {} \,[0-(y^(2) )/(2) -0]{} dz \\\\


\int\limits^(24)_0 {} \,(y^(2) )/(2) ]^(z-24) _(0) {} dz \\\\


\int\limits^(24)_0 {} \,[(((z-24)^(2))/(2))-0] {} dz \\\\


\int\limits^(24)_0 {} \,[(z^2)/(2)-288] {} dz \\\\


[(z^3)/(6)-288z]^(24) _(0) {} \\\\


[((24^3)/(6)-288(24))-0] {}


(4608-6912)=-2304\\

Answer: -2304

Set up the triple Integral SI V over the tetrahedron formed by the coordinate planes-example-1
User Eagleoneraptor
by
3.9k points