Answer:
(a) x = 2
(b) 7 + 5√2
Explanation:
Part (a)
Given terms of a geometric sequence:
The common ratio of a geometric sequence is found by dividing consecutive terms. Therefore:
![\implies (a_3)/(a_2)=(a_2)/(a_1)](https://img.qammunity.org/2023/formulas/mathematics/college/lneqssanmsvqnrf4cmdexxbcwstt4dn91e.png)
Substitute the given terms into the equation and solve for x:
![\implies (√(x)+1)/(1)=(1)/(√(x)-1)](https://img.qammunity.org/2023/formulas/mathematics/college/e5yz1k86uk921kk10yysor1ykh0oz8adeu.png)
![\implies (√(x)-1)(√(x)+1)=1](https://img.qammunity.org/2023/formulas/mathematics/college/ti9xcanhw0ppbhogrv090esexsyj3pkura.png)
![\implies x+√(x)-√(x)-1=1](https://img.qammunity.org/2023/formulas/mathematics/college/xqczlunn32luu1y5y649jp7osw6bpq4qgc.png)
![\implies x-1=1](https://img.qammunity.org/2023/formulas/mathematics/college/a8z31feyiij71vy0ktxme0ethr1ozobes7.png)
![\implies x=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/glxg8508eh508dlupk3062wc50pzsvn3dt.png)
Part (b)
General form of a geometric sequence:
![\boxed{a_n=ar^(n-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/ajxzfayw7mtp6jsgavggd1v0rkn5f34931.png)
where:
is the nth term.- a is the first term.
- r is the common ratio.
- n is the position of the term.
Substitute the found value of x into the expressions for the given terms:
Find the common ratio:
![\implies r=(a_3)/(a_2)=(√(2)+1)/(1)=√(2)+1](https://img.qammunity.org/2023/formulas/mathematics/college/g15j6h35ug0fqwr4tbxz3n06ikg39rdxxv.png)
Therefore, the equation for the nth term is:
![\boxed{a_n=(√(2)-1)(√(2)+1)^(n-1)}}](https://img.qammunity.org/2023/formulas/mathematics/college/6jkzicvkapsi4dfzu1v05p3vo600k87dkh.png)
To find the 5th term, substitute n = 5 into the equation:
![\implies a_5=(√(2)-1)(√(2)+1)^(5-1)](https://img.qammunity.org/2023/formulas/mathematics/college/vg6cg5cmkot3cr6m39ovmrgznhmj4ktqcv.png)
![\implies a_5=(√(2)-1)(√(2)+1)^(4)](https://img.qammunity.org/2023/formulas/mathematics/college/bj8vtuhb2islv15socxphtucs9qs1t7bqc.png)
![\implies a_5=(√(2)-1)(√(2)+1)^2(√(2)+1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/gh6ngzqj0rrnjcaqf1jiqg04hpyjlyf4be.png)
![\implies a_5=(√(2)-1)(3+2√(2))(3+2√(2))](https://img.qammunity.org/2023/formulas/mathematics/college/y2xqrfgv76u01lermoty4dyd4wwyy5ov3r.png)
![\implies a_5=(√(2)-1)(9+12√(12)+8)](https://img.qammunity.org/2023/formulas/mathematics/college/vaxxft3bj4thuwrp2jar24g2eo6n72c8sv.png)
![\implies a_5=(√(2)-1)(17+12√(2))](https://img.qammunity.org/2023/formulas/mathematics/college/v8fw486fzvj98jwhogvjqecfaw0tuimc7u.png)
![\implies a_5=17√(2)+24-17-12√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/1mi2awa73bbxdq11xpbi4q113zriw401zy.png)
![\implies a_5=7+5√(2)](https://img.qammunity.org/2023/formulas/mathematics/college/90ibrsolnb1oyjvx67y4e5j5eqn6g8e5vj.png)