Answer:
Explanation:
1)
Let Andre's grade needs to be a x on his next test
Hence,
![\displaystyle\\(89+83+91+92+93+x)/(6) =91\\\\(448+x)/(6) =91](https://img.qammunity.org/2023/formulas/mathematics/college/n9hvl94dl95vo50nwgmeowniux1iuiaiw5.png)
Multiply both parts of the equation by 6:
![448+x=91(6)\\\\448+x=546\\\\448+x-448=546-448\\\\x=98](https://img.qammunity.org/2023/formulas/mathematics/college/g0cd29rivsqv07doydifzkmudp16ca54j2.png)
2)
![\displaystyle\\(1000+1181+1191+1200+1268+1328+2584+x)/(8) =1344\\\\(9752+x)/(8)=1344](https://img.qammunity.org/2023/formulas/mathematics/college/q3d493aktrxipacrxxd4eylvgzuo0i0azs.png)
Multiply both parts of the equation by 8:
9752+x=1344(8)
9752+x=10752
9752+x-9752=10752-9752
x=$1000
3)
302, 293, 218, 330, 199, 253, 288
Arrange this series:
199, 218, 253, 288, 293, 302, 330
![\displaystyle\\a)\ the \ median = \$288\\\\b) \ the\ mean =(199+218+253+288+293+302+330)/(7) \\\\=(1883)/(7) \\\\=\$269\\c)\\\\(1883+x)/(8) =269+5\\\\(1883+x)/(8) =274](https://img.qammunity.org/2023/formulas/mathematics/college/oguepa5ggmztaijzsirqpojh18xklcnsw1.png)
Multiply both parts of the equation by 8:
1883+x=274(8)
1883+x=2192
1883+x-1883=2192-1883
x=$309