Answer:
![16x^2+25y^2-400=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/snga8f0w72dhpkhjcy6lyjzjfc6u28ft6f.png)
Explanation:
Given:
- The sum of the distance of any point (x, y) in this conic to the two focuses F₁=(-3,0) and F₂=(3, 0) is constant and equal to 10.
There are 4 types of conic sections:
- Circles (one focus).
- Parabolas (one focus).
- Ellipses (two foci).
- Hyperbolas (two foci).
The definition of an ellipse is:
- The set of points in a plane such that the sum of the distance from a point to each focus is constant.
Therefore, the given definition is one for an ellipse.
![\boxed{\begin{minipage}{7.4 cm}\underline{General equation of an ellipse}\\\\$((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1$\\\\where:\\\phantom{ww}$\bullet$ $(h,k)$ is the center. \\ \phantom{ww}$\bullet$ $(h\pm a,k)$ or $(h,k\pm b)$ are the vertices. \\ \phantom{ww}$\bullet$ $(h\pm c,k)$ or $(h,k\pm c)$ where $c^2=a^2-b^2$.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/luqkmbux1yyucby7x4z0m0k026m830jek1.png)
As the given foci are (-3, 0) and (3, 0), they are on the x-axis. Therefore:
Therefore, the major axis is on the x-axis and the vertices are (h±a, k) and the co-vertices are (h, k±b).
The constant is the major axis which is 2a. Given the constant is 10:
![\implies 2a=10](https://img.qammunity.org/2023/formulas/mathematics/high-school/22t5s9z3omlvwazaiy4x3bwzj1tseyb13j.png)
![\implies a=5](https://img.qammunity.org/2023/formulas/mathematics/college/jse9io7mjdyo0i0syyx14mdwp1gm6z8g0k.png)
Since c² = a² - b²:
![\implies 3^2=5^2-b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/qz8x9yn43v3l97lrvt2qu4qb3ne8748goo.png)
![\implies b^2=5^2-3^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ivfrt8hlp9bjf7mzsiro3qr9l7nbfm12wk.png)
![\implies b^2=25-9](https://img.qammunity.org/2023/formulas/mathematics/high-school/dcce0pv6by57hyq9j65szpu8xarl0z50iu.png)
![\implies b^2=16](https://img.qammunity.org/2023/formulas/mathematics/high-school/pvywoz91np9ht7vizhex9bej6x1lvsli3q.png)
Therefore, the equation for the conic section (ellipse) is:
![\implies ((x-0)^2)/(5^2)+((y-0)^2)/(16)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0me354n6cmocc2em7xhojppgh6jlnmffp.png)
![\implies (x^2)/(25)+(y^2)/(16)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/w6i06szi5qu5tf7hst307wdkblqhowsuq5.png)
In standard form:
![\implies 25 \cdot (x^2)/(25)+25 \cdot (y^2)/(16)=25 \cdot 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/1x2swaizcexwjloim6vdvy1ncdmd74yep4.png)
![\implies x^2+(25)/(16)y^2=25](https://img.qammunity.org/2023/formulas/mathematics/high-school/m7j8fp5rzj635x29mtk5023mwhrne6d0be.png)
![\implies 16 \cdot x^2+16 \cdot (25)/(16)y^2=16 \cdot 25](https://img.qammunity.org/2023/formulas/mathematics/high-school/y3psmqrgd9kmr1wxiqcrnj2cmglplg4try.png)
![\implies 16x^2+25y^2=400](https://img.qammunity.org/2023/formulas/mathematics/high-school/ntgy45k5a8wjr90qxf4hocw71kj9kmv7sy.png)
![\implies 16x^2+25y^2-400=400-400](https://img.qammunity.org/2023/formulas/mathematics/high-school/h1vf2mdhbcr5rd1amtibjcva8muxrd23si.png)
![\implies 16x^2+25y^2-400=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/2n1bpeji6wf5vamx0hj80o88nsbelmj4qg.png)