3.5k views
1 vote
III. Find all the factors - given one factor.
4. (2x³+3x² - 65x+84); x-4

User Delimiter
by
3.4k points

1 Answer

1 vote

Answer:

(x-4)(2x-3)(x+7)

Explanation:

f(x)=2x³+3x²-65x+84

f(x)=(x-4)(2x²+kx-21)

(x-4)(2x²+kx-21)=2x³+3x²-65x+84

2x³+kx²-21x-8x²-4kx+84=2x³+3x²-65x+84

2x³+(k-8)x²+(-21-4k)x+84=2x³+3x²-65x+84

k-8=3 ∧ -21-4k=-65

k=11 ∧ -4k=-44

k=11 ∧ k=11

f(x)=(x-4)(2x²+11x-21)

1)

2*(-21)=-42

42=2*21=3*14=6*7

-3+14=11

2x²-3x+14x-21=x(2x-3)+7(2x-3)=(2x-3)(x+7)

f(x)=(x-4)(x+7)(2x-3)

or 2)

f(x)=(x-4)(2x²+11x-21)

2x²+11x-21=0

Δ=b²-4ac

b=11 a=2 c=-21

Δ=11²-4*2*(-21)

Δ=289

√Δ=17

x=(-b-√Δ)/2a ∨ x=(-b+√Δ)/2a

x=(-11-17)/2*2 ∨ x=(-11+17)/2*2

x=-7 ∨ x=3/2

x+7=0 ∨ x-3/2=0 *2

x+7=0 ∨ 2x-3=0

(x+7)(2x-3)=0

f(x)=(x-4)(x+7)(2x-3)

User Euthyphro
by
3.6k points