Answer:
![x=-9, \quad x=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/owlzu8nwmvlkmt63fosjm4vpxv5gt6q9hg.png)
Explanation:
Given function:
![f(x)=(4x-1)(x+9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zoit6dg9f0stgfaoo02g9k2vm8im5lcwk7.png)
The roots of a function are the x-values for which the function equals zero. Therefore, to find the roots, set the function to zero and solve for x.
Set the function to zero:
![\implies f(x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/y8dbiiuqecj5hijf80zxqkkymr7agul0nz.png)
![\implies (4x-1)(x+9)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/u1n0nvz3zjeba7ffpogqiw913x5expqamv.png)
Zero Product Property
If a ⋅ b = 0 then either a = 0 or b = 0 (or both).
Apply the zero product property:
![(4x-1)=0 \implies x=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2d1c4imzdkh568fil8r1sc665kfe7ckqlj.png)
![(x+9)=0 \implies x=-9](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3kw6ja1anex2w1dj718ga3uk02cdvbktl.png)
Therefore, the roots of the given function are:
![x=-9, \quad x=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/owlzu8nwmvlkmt63fosjm4vpxv5gt6q9hg.png)