201k views
5 votes
The radius r of a circle is increasing at a rate of 4 centimeters per minute.

- Find the rates of change in the area

when r = 37 centimeters.


- The length s of each side of an equilateral triangle is

increasing at a rate of 13 feet per hour. Find the rate of change

of the area when s = 41 feet.

1 Answer

3 votes

Answer:

929.91 cm²/min

461.59 ft²/min

Explanation:


\boxed{\begin{minipage}{4cm}\underline{Area of a circle}\\\\$A=\pi r^2$\\\\where:\\ \phantom{ww}$\bullet$ $r$ is the radius. \\ \end{minipage}}

Differentiate the expression for area with respect to r:


\implies \frac{\text{d}A}{\text{d}r}=2\pi r

Given the radius is increasing at a rate of 4 centimeters per minute:


  • \frac{\text{d}r}{\text{d}t}=4

Use the chain rule to find an expression for the rate of change in the area with respect to time:


\implies \frac{\text{d}A}{\text{d}t}=\frac{\text{d}A}{\text{d}r} * \frac{\text{d}r}{\text{d}t}


\implies \frac{\text{d}A}{\text{d}t}=2 \pi r * 4


\implies \frac{\text{d}A}{\text{d}t}=8 \pi r

When r = 37 cm:


\implies \frac{\text{d}A}{\text{d}t}=8\pi (37)


\implies \frac{\text{d}A}{\text{d}t}=296 \pi


\implies \frac{\text{d}A}{\text{d}t}=929.91\; \sf (2\;d.p.)

Therefore, the rate of change in the area when the radius is 37 centimeters is 929.91 cm²/min.

--------------------------------------------------------------------------------------


\boxed{\begin{minipage}{5 cm}\underline{Area of an equilateral triangle}\\\\$A=(√(3))/(4)s^2$\\\\where:\\ \phantom{ww}$\bullet$ $s$ is the side length. \\ \end{minipage}}

Differentiate the expression for area with respect to s:


\implies \frac{\text{d}A}{\text{d}s}=(2√(3))/(4)s=(√(3))/(2)s

Given the length of each side is increasing at a rate of 13 feet per hour.


\implies \frac{\text{d}s}{\text{d}t}=13

Use the chain rule to find an expression for the rate of change of the area with respect to time:


\implies \frac{\text{d}A}{\text{d}t}=\frac{\text{d}A}{\text{d}s} * \frac{\text{d}s}{\text{d}t}


\implies \frac{\text{d}A}{\text{d}t}=(√(3))/(2)s * 13


\implies \frac{\text{d}A}{\text{d}t}=(13√(3))/(2)s

When s = 41 ft:


\implies \frac{\text{d}A}{\text{d}t}=(13√(3))/(2)(41)


\implies \frac{\text{d}A}{\text{d}t}=(533√(3))/(2)


\implies \frac{\text{d}A}{\text{d}t}=461.59 \sf \;\;(2\;d.p.)

Therefore, the rate of change in the area when the side length is 41 feet is 461.59 ft²/min.

Differentiation rules used:


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\frac{\text{d}y}{\text{d}x}=nx^(n-1)$\\\end{minipage}}

User Prashant G Patil
by
4.3k points