151k views
1 vote
Rewrite the function by completing the square. f(x)= 2 x^{2} +13 x +20f(x)=2x 2 +13x+20f, left parenthesis, x, right parenthesis, equals, 2, x, squared, plus, 13, x, plus, 20 f(x)=f(x)=f, left parenthesis, x, right parenthesis, equals (x+(x+left parenthesis, x, plus )^2+) 2 +right parenthesis, squared, plus

2 Answers

2 votes

Answer:


f(x)=2\left(x+(13)/(4)\right)^2-(9)/(8)

Explanation:

Given function:


f(x)=2x^2+13x+20

Factor out 2 from the terms in x:


f(x)=2\left(x^2+(13)/(2)x\right)+20

Add the square of half the coefficient of x inside the parentheses, and subtract the distributed equivalent outside the parentheses:


f(x)=2\left(x^2+(13)/(2)x+\left(((13)/(2))/(2)\right)^2\right)+20-2\left(((13)/(2))/(2)\right)^2

Simplify:


f(x)=2\left(x^2+(13)/(2)x+\left((13)/(4)\right)^2\right)+20-2\left((13)/(4)\right)^2


f(x)=2\left(x^2+(13)/(2)x+(169)/(16)\right)+20-(169)/(8)


f(x)=2\left(x^2+(13)/(2)x+(169)/(16)\right)-(9)/(8)

Factor the perfect trinomial inside the parentheses:


f(x)=2\left(x+(13)/(4)\right)^2-(9)/(8)

User Adrift
by
3.0k points
4 votes

Answer:

  • f(x) = 2(x + 13/4)² - 9/8

--------------------

Given

  • Function f(x) = 2x² + 13x + 20

Rewrite it by completing the square

  • f(x) =
  • 2x² + 13x + 20 =
  • 2(x² + 13/2 x) + 20 =
  • 2[x² + 2x*13/4 + (13/4)² - (13/4)²] + 20 =
  • 2(x + 13/4)² - 169/8 + 20 =
  • 2(x + 13/4)² - (169 - 8*20)/8 =
  • 2(x + 13/4)² - 9/8
User Tassos
by
3.7k points