206k views
4 votes
Find the slope and Y-Intercept of the graph of each equation

11x + y = 6
9x - 6y = 8
12x - 18y = 15
5x + y = 13
y + 3 - 5/2x - 5

User Jlaur
by
8.1k points

1 Answer

3 votes

Answer:

1) Slope = -11, y-intercept = 6

2) Slope = 3/2, y-intercept = -4/3

3) Slope = 2/3, y-intercept = -5/6

4) Slope = -5, y-intercept = 13

5) Slope = 5/2, y-intercept = -8

Explanation:


\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}

To find the slope and y-intercept of each equation, rearrange each equation so that it is in slope-intercept form.


\begin{aligned}&\textsf{Given equation}: & 11x + y & = 6\\&\textsf{Subtract $11x$ from both sides}: \quad & 11x + y-11x & = 6-11x\\&\textsf{Simplify}: & y & = 6-11x\\&\textsf{Slope-intercept form}: & y&=-11x+6\end{aligned}

Therefore:

  • Slope = -11
  • y-intercept = 6

--------------------------------------------------------------------------------------------


\begin{aligned}&\textsf{Given equation}: & 9x-6y&=8\\&\textsf{Add $6y$ to both sides}: \quad & 9x-6y+6y&=8+6y\\&\textsf{Simplify}: & 9x&=8+6y\\&\textsf{Subtract $8$ from both sides}: & 9x-8&=8+6y-8\\&\textsf{Simplify}: & 9x-8&=6y\\&\textsf{Divide both sides by $6$}: & (9x-8)/(6)&=(6y)/(6)\\&\textsf{Simplify}: & (3)/(2)x-(4)/(3)&=y\\&\textsf{Slope-intercept form}: & y&=(3)/(2)x-(4)/(3)\end{aligned}

Therefore:

  • Slope = 3/2
  • y-intercept = -4/3

--------------------------------------------------------------------------------------------


\begin{aligned}&\textsf{Given equation}: & 12x - 18y &= 15\\&\textsf{Add $18y$ to both sides}: \quad & 12x - 18y +18y&= 15+18y\\&\textsf{Simplify}: & 12x&=15+18y\\&\textsf{Subtract $15$ from both sides}: & 12x-15&=15+18y-15\\&\textsf{Simplify}: & 12x-15&=18y\\&\textsf{Divide both sides by $18$}: & (12x-15)/(18)&=(18y)/(18)\\&\textsf{Simplify}: & (2)/(3)x-(5)/(6)&=y\\&\textsf{Slope-intercept form}: & y &= (2)/(3)x-(5)/(6)\end{aligned}

Therefore:

  • Slope = 2/3
  • y-intercept = -5/6

--------------------------------------------------------------------------------------------


\begin{aligned}&\textsf{Given equation}: & 5x + y &= 13\\&\textsf{Subtract $5x$ from both sides}: \quad & 5x + y-5x &= 13-5x\\&\textsf{Simplify}: & y&=13-5x\\&\textsf{Slope-intercept form}: & y&=-5x+13\end{aligned}

Therefore:

  • Slope = -5
  • y-intercept = 13

--------------------------------------------------------------------------------------------


\begin{aligned}&\textsf{Given equation}: & y+3&=(5)/(2)x-5\\&\textsf{Subtract $3$ from both sides}: & y+3-3&=(5)/(2)x-5-3\\&\textsf{Simplify}: & y&=(5)/(2)x-8\\&\textsf{Slope-intercept form}: & y&=(5)/(2)x-8\end{aligned}

Therefore:

  • Slope = 5/2
  • y-intercept = -8
User Rupert Pupkin
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories