92.3k views
0 votes
A 6000 kg truck full of Girl Scout cookies traveling north at 5 m/s collides with a

4000 kg tanker truck full of milk traveling west at 15 m/s. The two remain locked
together after the collision. What is their velocity after the collision?

1 Answer

7 votes

Answer:

Approximately
6.7\; {\rm m\cdot s^(-1)} at approximately
63^(\circ) west from north (
{\rm N63^(\circ)W}.)

Step-by-step explanation:

The velocity of both vehicles can be described with a two-dimensional vector:


\begin{aligned}\begin{bmatrix}(\text{north-south velocity}) \\ (\text{west-east velocity})\end{bmatrix}\end{aligned}.

(Note that the two directions are perpendicular to one another.)

For example, since the cookie vehicle is travelling north at
5\; {\rm m\cdot s^(-1)}, its velocity vector will be:


\begin{aligned}v_(a) &= \begin{bmatrix}5 \\ 0\end{bmatrix}\; {\rm m\cdot s^(-1)}\end{aligned}.

Likewise, the velocity vector of the milk vehicle travelling west at
15\; {\rm m\cdot s^(-1)} will be:


\begin{aligned}v_(a) &= \begin{bmatrix}0 \\ 15\end{bmatrix}\; {\rm m\cdot s^(-1)}\end{aligned}.

When an object of mass
m travels at a velocity of
v, the momentum
p of that object will be
p = m\, v.

The momentum vector of the
m_(a) = 6000\; {\rm kg} cookie vehicle will be:


\begin{aligned}p_(a) &= m_(a) \, v_(a) \\ &= (6000\; {\rm kg})\, \begin{bmatrix}5 \\ 0\end{bmatrix}\; {\rm m\cdot s^(-1)} \\ &= \begin{bmatrix}30000 \\ 0\end{bmatrix}\; {\rm kg\cdot m\cdot s^(-1)}\end{aligned}.

The momentum vector of the
m_(a) = 4000\; {\rm kg} milk vehicle will be:


\begin{aligned}p_(a) &= m_(a)\, v_(a) \\ &= (4000\; {\rm kg})\, \begin{bmatrix}0\\ 15\end{bmatrix}\; {\rm m\cdot s^(-1)} \\ &= \begin{bmatrix}0\\ 60000\end{bmatrix}\; {\rm kg\cdot m\cdot s^(-1)}\end{aligned}.

Hence, the total momentum of the two vehicles before the collision will be:


\begin{aligned}p_(a) + p_(b) &= \begin{bmatrix}30000\\ 0\end{bmatrix}\; {\rm kg\cdot m\cdot s^(-1)} + \begin{bmatrix}0\\ 60000\end{bmatrix}\; {\rm kg\cdot m\cdot s^(-1)} \\ &= \begin{bmatrix}30000\\ 60000\end{bmatrix}\; {\rm kg\cdot m\cdot s^(-1)} \end{aligned}.

Let
v denote the velocity vector of the two vehicles right after they collide. With a total mass of
(m_(a) + m_(b)) = (6000\; {\rm kg} + 4000\; {\rm kg}) = 10000\; {\rm kg}, the total momentum of the two vehicles right after the collision will be:
p = (m_(a) + m_(b))\, v.

Momentum is conserved. Hence, right after collision, the total momentum of the two vehicles will stay the same. Thus,


\begin{aligned}(m_(a) + m_(b))\, v = p = p_(a) + p_(b)\end{aligned}.


\begin{aligned}v &= (p)/(m_(a) + m_(b)) \\ &= (p_(a) + p_(b))/(m_(a) + m_(b)) \\ &= \frac{\begin{bmatrix}30000 \\ 60000\end{bmatrix}\; {\rm kg \cdot m\cdot s^(-1)}}{10000\; {\rm kg}} \\ &= \begin{bmatrix}3 \\ 6\end{bmatrix}\; {\rm m\cdot s^(-1)}\end{aligned}.

Since the two directions (north-south and west-east) are perpendicular to each other, the Pythagorean Theorem can be applied to find the magnitude of this velocity:


\begin{aligned}\| v \| &= \left(\sqrt{3^(2) + 6^(2)}\right)\; {\rm m\cdot s^(-1)} \\ &\approx 6.7\; {\rm m\cdot s^(-1)}\end{aligned}.

The angle between this velocity and the direction of north can be found as:


\begin{aligned}\arctan\left(\frac{\text{opposite}}{\text{adjacent}}\right) &= \arctan \left((6)/(3)\right) \approx 63^(\circ)\end{aligned}.

User Jlembke
by
4.9k points