Answer:
![(78)/(5) \pi = 15.6 \pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/dzj22xe4n40tl5otloqte0q95qzjaf85s6.png)
Explanation:
Given values:
- Radius (r) = 5.2
- Arc length = 6π
As the arc length is given in terms of pi, use the formulas where the angle is measured in radians.
![\boxed{\begin{minipage}{6.3 cm}\underline{Arc length}\\\\Arc length $=r \theta$\\\\where:\\ \phantom{ww}$\bullet$ $r$ is the radius. \\ \phantom{ww}$\bullet$ $\theta$ is the angle measured in radians.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2wmmfi59egn3gjejvdr2nc3xceytodj1sj.png)
Substitute the given values into the arc length formula to calculate the central angle (in radians):
![\implies 6\pi=5.2\; \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/9yaxyz2kd4j9vi293she09onzso0gd4yco.png)
![\implies \theta=(6\pi)/(5.2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xw1qs8orz8v2y1o8exijpq4o9s2ultr26d.png)
![\implies \theta=(15)/(13)\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/hayrjnaq6hhzhneuv2raywr1mwzjvxorus.png)
![\boxed{\begin{minipage}{6.3 cm}\underline{Area of a sector of a circle}\\\\Area of a sector = $\frac12 r^2 \theta$\\\\where:\\ \phantom{ww}$\bullet$ $r$ is the radius. \\ \phantom{ww}$\bullet$ $\theta$ is the angle measured in radians.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gqwgb14xp6w1dkp0v9cx4sbv39ls3xsmvt.png)
Substitute the radius and the found angle into the formula and solve for area:
![\begin{aligned}\implies \textsf{Area of the sector}&=(1)/(2)(5.2)^2 \left((15)/(13)\pi\right)\\\\&=(1)/(2)(27.04) \left((15)/(13)\pi\right)\\\\&=(13.52) \left((15)/(13)\pi\right)\\\\&=(78)/(5)\pi \\\\&=15.6 \pi\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q1a8zcp9vr4xj4olxcg4xuvpemu8blex34.png)