118k views
0 votes
Solve the equation without using a calculator


x^2+\big(4x^3-3x\big)^2=1

User Steveayre
by
8.4k points

1 Answer

3 votes

Answer:


x= (√(2))/(2), \quad x=-(√(2))/(2),\\\\x=\frac{\sqrt{2 - √(2)}}{2}, \quad x=-\frac{\sqrt{2 - √(2)}}{2}, \quad x= \frac{\sqrt{2 + √(2)}}{2}, \quad x= -\frac{\sqrt{2 + √(2)}}{2}

Explanation:

Given equation:


x^2+(4x^3-3x)^2=1

Expand and equal the equation to zero:


\begin{aligned}x^2+(4x^3-3x)^2&=1\\x^2+(4x^3-3x)(4x^3-3x)&=1\\x^2+16x^6-24x^4+9x^2&=1\\16x^6-24x^4+x^2+9x^2-1&=0\\16x^6-24x^4+10x^2-1&=0\end{aligned}

Let u = x²:


\implies 16u^3-24u^2+10u-1=0

Factor Theorem

If f(x) is a polynomial, and f(a) = 0, then (x – a) is a factor of f(x)


\textsf{As\;\;$f\left((1)/(2)\right)=0$\;\;then\;$\left(u-(1)/(2)\right)$\;is a factor of $f(u)$}.

Therefore:


\implies \left(u-(1)/(2)\right)\left(16u^2+bu+2\right)=0

Compare the coefficients of u² to find b:


\implies b-8 = -24


\implies b = -16

Therefore:


\implies \left(u-(1)/(2)\right)\left(16u^2-16u+2\right)=0

Factor out 2:


\implies 2\left(u-(1)/(2)\right)\left(8u^2-8u+1\right)=0


\implies \left(u-(1)/(2)\right)\left(8u^2-8u+1\right)=0

Zero Product Property

If a ⋅ b = 0 then either a = 0 or b = 0 (or both).

Using the Zero Product Property, set each factor equal to zero and solve for u.


\implies u-(1)/(2)=0 \implies u=(1)/(2)

Use the quadratic formula to solve the quadratic:


\implies u=(-(-8) \pm √((-8)^2-4(8)(1)))/(2(8))


\implies u=(8 \pm √(32))/(16)


\implies u=(8 \pm 4√(2))/(16)


\implies u=(2 \pm √(2))/(4)

Therefore:


u=(1)/(2), \quad u=(2 - √(2))/(4), \quad u=(2 + √(2))/(4)

Substitute back u = x²:


x^2=(1)/(2), \quad x^2=(2 - √(2))/(4), \quad x^2=(2 + √(2))/(4)

Solve each case for x:


\implies x^2=(1)/(2)


\implies x=\pm \sqrt{(1)/(2)}


\implies x=\pm (√(2))/(2)


\implies x^2=(2 - √(2))/(4)


\implies x=\pm \sqrt{(2 - √(2))/(4)}


\implies x=\pm \frac{\sqrt{2 - √(2)}}{2}


\implies x^2=(2 + √(2))/(4)


\implies x=\pm \sqrt{(2 + √(2))/(4)}


\implies x=\pm \frac{\sqrt{2 + √(2)}}{2}

Solutions


x= (√(2))/(2), \quad x=-(√(2))/(2),\\\\x=\frac{\sqrt{2 - √(2)}}{2}, \quad x=-\frac{\sqrt{2 - √(2)}}{2}, \quad x= \frac{\sqrt{2 + √(2)}}{2}, \quad x= -\frac{\sqrt{2 + √(2)}}{2}

User Macka
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories