36.7k views
3 votes
PLS HELP QUICK. Determine which integer will make the inequality 12 > 2x + 4 true.

S:{8}
S:{4}
S:{12}
S:{−2}

2 Answers

7 votes

Answer:

The number that makes the inequality true is D, -2

Explanation:

  • Reverse the inequality


2x+4 < 12

  • Subtract by the lone number to the left; 4


2x+4-4 < 12-4\\2x+4-4\\=2x+\left(4-4\right)\\= 4-4\\= 2x+0\\=2x

-------------


12-4\\= 8


= 2x < 8

  • Divide by the leading coefficient; 2. Assume x = 1


(2x)/(2) < (8)/(2)


(2x)/(2) = (2* x)/(2) = (2)/(2) = x

-------------------------


(8)/(2) = 4

  • Thus,


\bold{x < 4}

  • Because x is less than 4, the only number less than 4 is -2. Therefore, D is your answer.

Hope this helps!

User Infinity James
by
4.5k points
2 votes

Answer:

S:{-2}

Explanation:

12 > 2(-2) + 4

12 > -4 + 4

12 > 0

User MichelZ
by
3.8k points