Answer:
![(x,y)=\left(\; \boxed{-13,4} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/1fd32cce2tpsodriaho1un0yq2cyb6pgmz.png)
![(x,y)=\left(\; \boxed{3,0} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/gtpkulvxmschvaa64uepze1e6g291zu9wx.png)
Explanation:
Given system of equations:
![\begin{cases}\;\;\;\;\;\;\;y^2=3-x\\x+4y=3\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/o6ycudrp96yzxhhhg5tdbgqyad5ddm8ohp.png)
To solve by the method of substitution, rearrange the second equation to make x the subject:
![\implies x=3-4y](https://img.qammunity.org/2023/formulas/mathematics/college/wocndgzavy2lnpji8tw5clg8xlqczy7duz.png)
Substitute the found expression for x into the first equation and rearrange so that the equation equals zero:
![\begin{aligned}x=3-4y \implies y^2&=3-(3-4y)\\y^2&=3-3+4y\\y^2&=4y\\y^2-4y&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/wp027xwd9di4q2g68rwtvjno6izfbup9fq.png)
Factor the equation:
![\begin{aligned}\implies y^2-4y&=0\\y(y-4)&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/vph3pivk6wmgq01zx9z7ujl24fzggp3bex.png)
Apply the zero-product property and solve for y:
![\implies y=0](https://img.qammunity.org/2023/formulas/mathematics/college/xp4vl9uok5cge84vo6cu98qbav6cof9m2z.png)
![\implies y-4=0 \implies y=4](https://img.qammunity.org/2023/formulas/mathematics/college/9duap6bzplgduzv061iuwwv8k6hupwjea0.png)
Substitute the found values of y into the second equation and solve for x:
![\begin{aligned}y=0 \implies x+4(0)&=3\\x&=3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/qghlvi0txf1kisg0t44lut62ujxkxrn809.png)
![\begin{aligned}y=4 \implies x+4(4)&=3\\x+16&=3\\x&=-13\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/qgkskujw9sktlivkd7uk46i9wms6z4kl0f.png)
Therefore, the solutions are:
![(x,y)=\left(\; \boxed{-13,4} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/1fd32cce2tpsodriaho1un0yq2cyb6pgmz.png)
![(x,y)=\left(\; \boxed{3,0} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/gtpkulvxmschvaa64uepze1e6g291zu9wx.png)