Answer:
![(x,y)=\left(\; \boxed{-2,-9} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/wxx5g70tbr9wuw8vp9yl2ss92kk78t4w6h.png)
![(x,y)=\left(\; \boxed{5,12} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/rz6zh84ojwzze59w0x1laqt2zcksl3a3mn.png)
Explanation:
Given system of equations:
![\begin{cases}y=x^2-13\\y=3x-3\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/3rr9tk8dusbzpacrft4a9fl1iydm5p3tao.png)
To solve by the method of substitution, substitute the first equation into the second equation and rearrange so that the equation equals zero:
![\begin{aligned}x^2-13&=3x-3\\x^2-3x-13&=-3\\x^2-3x-10&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/40f0t5lwhy5fn8ex419am5x2gofvykh3pn.png)
Factor the quadratic:
![\begin{aligned}x^2-3x-10&=0\\x^2-5x+2x-10&=0\\x(x-5)+2(x-5)&=0\\(x+2)(x-5)&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/djqpipy6gswqom4445zgzggurkcazgnwe8.png)
Apply the zero-product property and solve for x:
![\implies x+2=0 \implies x=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/4nokn2r3i7iz9avmgl0mh2trnkt8s57j8k.png)
![\implies x-5=0 \implies x=5](https://img.qammunity.org/2023/formulas/mathematics/college/r6jjwbgpgnqitklt5mw2jfishk4ara5tdz.png)
Substitute the found values of x into the second equation and solve for y:
![\begin{aligned}x=-2 \implies y&=3(-2)-3\\y&=-6-3\\y&=-9\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/bubnjpoc6l0zlh6q29nts2cdxslzx7qvql.png)
![\begin{aligned}x=5 \implies y&=3(5)-3\\y&=15-3\\y&=12\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7m41oh9lu1jmmzgy7zo40equij9pumfswy.png)
Therefore, the solutions are:
![(x,y)=\left(\; \boxed{-2,-9} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/wxx5g70tbr9wuw8vp9yl2ss92kk78t4w6h.png)
![(x,y)=\left(\; \boxed{5,12} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/rz6zh84ojwzze59w0x1laqt2zcksl3a3mn.png)