229k views
2 votes
NO LINKS!! Use the method of substitution to solve the system. (if there's no solution, enter no solution). Part 4z​

NO LINKS!! Use the method of substitution to solve the system. (if there's no solution-example-1

2 Answers

3 votes

Answer:


(x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}


(x,y)=\left(\; \boxed{(1)/(8), (1)/(128)} \; \right)\quad \textsf{(larger $x$-value)}

Explanation:

Given system of equations:


\begin{cases}2y=x^2\\\;\;y=4x^3\end{cases}

To solve by the method of substitution, substitute the second equation into the first equation, rearrange so that the equation equals zero, then factor:


\begin{aligned}y=4x^3 \implies 2(4x^3)&=x^2\\8x^3&=x^2\\8x^3-x^2&=0\\x^2(8x-1)&=0\end{aligned}

Apply the zero-product property to solve for x:


\implies x^2=0 \implies x=0


\implies 8x-1=0 \implies x=(1)/(8)

Substitute the found values of x into the second equation and solve for y:


\begin{aligned}x=0 \implies y&=4(0)^3\\y&=0\end{aligned}


\begin{aligned}x=(1)/(8) \implies y&=4\left( (1)/(8)\right)^3\\y&=4 \cdot (1)/(512)\\y&=(1)/(128)\end{aligned}

Therefore, the solutions are:


(x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}


(x,y)=\left(\; \boxed{(1)/(8), (1)/(128)} \; \right)\quad \textsf{(larger $x$-value)}

User Alexdriedger
by
3.3k points
1 vote

Answer:

  • (0, 0)
  • (1/8, 1/128)

=====================

Given system

  • 2y = x²
  • y = 4x³

Double the second equation

  • 2y = x²
  • 2y = 8x³

Solve by elimination

  • x² = 8x³
  • x²(8x - 1) = 0
  • x = 0 and 8x - 1 = 0
  • x = 0 and x = 1/8

Find the value of y

  • x = 0y = 0
  • x = 1/8 ⇒ y = 4*(1/8)³ = 1/128

User John Waters
by
2.8k points