21.8k views
5 votes
Find the inverse of
f(x)=3*5^x^+^1-3 and give the domain in interval form of the resulting function.

1 Answer

4 votes

Answer:


f^(-1)(x)=( \ln \left( (x+3)/(15) \right) )/( \ln 5), \quad \textsf{for}\; \{x : x > -3 \}

Explanation:

Given function:


f(x)=3 \cdot 5^(x+1)-3

The domain of the given function is unrestricted: (-∞, +∞).

The range of the given function is restricted: (-3, +∞).

The inverse of a function is its reflection in the line y = x.

To find the inverse of a function, replace x with y:


\implies x=3 \cdot 5^(y+1)-3

Rearrange the equation to make y the subject:


\implies x=3 \cdot 5^(y+1)-3


\implies x=3 \cdot 5^y \cdot 5^1-3


\implies x=15 \cdot 5^y -3


\implies x+3=15 \cdot 5^y


\implies (x+3)/(15)= 5^y


\implies \ln \left( (x+3)/(15) \right) = \ln 5^y


\implies \ln \left( (x+3)/(15) \right) = y \ln 5


\implies y=( \ln \left( (x+3)/(15) \right) )/( \ln 5)

Replace y with f⁻¹(x):


\implies f^(-1)(x)=( \ln \left( (x+3)/(15) \right) )/( \ln 5)

The domain of the inverse of a function is the same as the range of the original function.

Therefore, the domain of the inverse function is (-3, +∞).

Therefore, the inverse of the given function is:


f^(-1)(x)=( \ln \left( (x+3)/(15) \right) )/( \ln 5), \quad \textsf{for}\; \{x : x > -3 \}

Find the inverse of f(x)=3*5^x^+^1-3 and give the domain in interval form of the resulting-example-1
User Dmitri M
by
6.2k points