Answer:
Step-by-step explanation:
Given:
c₁ = 2100 J / (kg·°C)
c₂ = 4200 J / (kg·°C)
λ₁ = 3.4·10⁵ J / kg -
t₁ = -24.2°C
t₀ = 0°C
t₂ = 78.3°C
t = 40.0°C
m₂ = 0.350 kg
___________
m₁ - ?
Ice is heated to 0°C:
Q₁ = c₁·m₁·(t₀ - t₁) = 2100·m₁·(0 - (-24.2)) = 50 820·m₁ J
The ice is melting:
Q₂ = λ·m₁ = 340 000·m₁ J
Cold water is heated:
Q₃ = c₂·m₁·(t - t₀) = 4200·(40.0 - 0)·m₁ = 168 000 J
Hot water is cooling down:
Q₄ = c₂·m₂·(t₂ - t) = 4200·0,350·(78.3 - 40.0) = 56 300 J
Thermal badance equation:
Q₁ + Q₂ + Q₃ = Q₄
m₁·(50820 + 340 000 + 168 000) = 56 300
m₁·(3 620 000) = 56 300
Mass of ice:
m₁ = 56 300 / 3 620 000 ≈ 0,016 kg or 16 g